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ABSTRACT

Seismic imaging necessitates precisely separating P- and S-waves to mitigate unde-

sirable crosstalk between them. Failure to properly handle this crosstalk can lead to

distorted or misinterpreted images. In an elastic anisotropic medium, the polarization

of a P-wave is not necessarily parallel to its propagating direction, making the separa-

tion of P- and S-waves harder than in the case of an elastic isotropic medium. A pure

acoustic transversely isotropic (TI) wave equation involves a mixed-domain problem.

This usually means the space dependencies and wavenumbers are coupled in the wave-

field extrapolator. An efficient solution to the wavefield requires a separation between

the space dependencies and wavenumbers in the extrapolator. There are two primary

approaches: (1) An analytical separation of the mixed-domain term; (2) A numerical

solution to the mixed-domain term, such as low-rank and Poynting vector methods. In

this study, we derive the acoustic approximation by setting the S-wave phase velocity

to zero in all directions. We propose an analytical separation by employing a Taylor

series to linearize the anellipticity term, thereby decoupling the space-dependent and

wavenumber-dependent variables within the wavefield extrapolator. The kinematics
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analysis demonstrates that our method has competitive phase velocity accuracy com-

pared to existing methods. Moreover, the corresponding TI acoustic wave equation

can be efficiently solved by the hybrid finite-difference/pseudospectral method. In a

2D case, it only requires one fast Fourier transform, two inverse Fourier transforms

and a few additional spatial differentiations at each time step. Remarkably, our wave-

field solution remains independent of the wavefield heterogeneity (as observed in the

low-rank approach) and is immune to wavefield interference (as encountered in the

Poynting vector method). The proposed acoustic approximation ensures the absence

of any S-wave artifacts with relatively cheap computation. Numerical examples show

our proposed acoustic TTI wave equation is reliable for accurate wavefield modelling

and reverse time migration (RTM).
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INTRODUCTION

The acoustic wave equation is extensively utilized in geophysics for tasks such as

modeling, migration, and inversion, primarily to mitigate issues related to crosstalk

between P- and S-waves and parameter tradeoff (Li et al., 2015; Pestana et al., 2012;

Yang and Zhu, 2018). Crosstalk refers to the situation in which the P- and S-wave

components of both source and receiver wavefields are not entirely separated, result-

ing in interference between them. The challenge of parameter tradeoff arises because

many inverse problems are ill-posed or underdetermined, demanding a delicate equi-

librium between these parameters. Enhancing the estimation of one parameter often

comes at the cost of the accuracy of others. The inverse problem for the elastic wave

equation is inherently more intricate compared to the acoustic counterpart, making

the elastic inverse problem more susceptible to issues related to parameter tradeoffs.

The combination of crosstalk and parameter tradeoff can lead to the generation of

artifacts, noise, and distortions in migrated images, particularly in anisotropic media,

where wave propagation is direction-dependent (In the Christoffel equation, both the

wave speed and the polarization are functions of the propagating direction). In ad-

dition, the acoustic wavefield is generally cheaper to solve than the elastic one. To

obtain the acoustic wavefield, the separation of P- and S-waves in an elastic medium

is necessary. Anisotropy is pervasive across Earth media and ignoring it can lead to

severe distortions and loss of resolution in the final model (Thomsen, 2002). The

polarization of a qP-wave (P-wave to remain concise) is not necessarily parallel to the

propagating direction in an anisotropic medium. Thus, differently from an isotropic
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medium, the anisotropic P-wavefield cannot be obtained by applying a Helmholtz

decomposition to the elastic wavefield (Tsvankin, 2012).

The pure P-wave dispersion relation for anisotropic media introduces complexity

as the space dependency and wavenumbers are coupled, making direct solutions of

the resulting wave equation usually computationally expensive. Consequently, there

are two general approaches to solving the pure acoustic wavefield efficiently: (1) An-

alytical methods involve formulating an acoustic wave equation with reduced com-

plexity by separating space dependency and wavenumbers analytically (Alkhalifah,

1998a, 2000; Chu et al., 2011); (2) Alternatively, specialized numerical methods can

be employed to separate space and wavenumbers. These methods include low-rank

approximations (Song and Alkhalifah, 2013; Engquist and Ying, 2009; Cheng and

Fomel, 2014) and the Poynting vector method (Xu and Zhou, 2014; Zhang and Ohen,

2022).

Under given approximations, the acoustic wave equation can be obtained analyti-

cally from the anisotropic elastic wave equation. For instance, by setting the vertical

S-wave phase velocity to zero in the vertical transversely isotropic (VTI) elastic dis-

persion relation, Alkhalifah (1998a) and Alkhalifah (2000) obtained an acoustic VTI

wave equation with fourth-order derivatives in both time and space. However, this

form produces S-wave artifacts as the order of the characteristic equation from the

Christoffel equation is 4, thus, it contains 2 wave modes corresponding to P-wave and

S-wave artifacts. In practical applications, one always needs to taper the anelliptic-

ity (η) in the source region to suppress the S-wave artifacts. Following this, Zhou
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et al. (2006) extend the work to tilt transversely isotropic (TTI) media, but it still

contains S-wave artifacts and is not numerically stable with fast change of the tilt

angle. To address the instability issue, Zhang et al. (2011) proposed a stable acous-

tic TTI equation, derived from Hooke’s law and the equation of motion, but it still

contains S-wave artifacts. Another approach to obtain the pure P-wave information

is to expand the term of the square root in the P-wave dispersion using Taylor series

(Chu et al., 2011), which is free from S-wave artifacts. However, to make a feasible

numerical solution (separation between space dependencies and wavenumbers), one

additional assumption has to be made: Horizontal P-wave phase velocity (vph) and

vertical P-wave phase velocity (vpz) satisfy vph ≈ vpz. Pestana et al. (2012) used the

same approach for 2D VTI reverse time migration (RTM), with a weaker assump-

tion
v2ph−v2sz
v2pz−v2sz

≈ constant, where vsz is the vertical S-wave phase velocity. A better

approach to obtain the pure P-wave equation in TI media is proposed by Stovas et al.

(2020). The idea is to set S-wave velocity in all the propagating directions to be zero

in the coupled P-SV dispersion relations. A similar approach is also used here (Xu

et al., 2020). While also free from any S-wave artifacts, the mixed space-wavenumber

anellipticity term burdens computation. Li and Stovas (2021a) propose an acoustic

wave equation for TI media that has a simpler form of the anellipticity term, with

space and wavenumbers decoupled. This is done by manipulating the S-wave veloc-

ity such that the material properties and the wavenumbers are no longer coupled in

the anellipticity term. However, the S-wave velocity is not ensured zero in all the

propagating directions and this approximation accuracy might be dependent on ma-

terial parameters. This method is also used by Li and Stovas (2021b) for the acoustic
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approximation for orthorhombic media.

The above reviews some analytical approaches to derive a pure acoustic wave

equation without coupling between space and wavenumbers. Numerical approaches

can also be employed to deal with the coupled space-wavenumber problem. For in-

stance, Song and Alkhalifah (2013) solved the acoustic wavefield for orthorhombic

media using the low-rank approach directly on the P-wave wavefield extrapolator,

where the original P-wave wavefield extrapolator entails a coupling between material

properties (space-dependent) and wavenumbers in the mixed domain. Utilizing the

low-rank approach to address the space-wavenumber problem has gained popularity

in the literature (Engquist and Ying, 2009; Cheng and Fomel, 2014; Wu et al., 2019;

Cheng et al., 2016; Fomel et al., 2013). The key advantage of this approach is its

ability to circumvent numerical dispersion issues arising from the Laplacian operator,

ensuring the absence of S-wave artifacts. However, when dealing with more intricate

media, higher ranks are often necessary to achieve a sufficiently accurate approxi-

mation. This requirement arises from the fact that the rank of a matrix (wavefield

extrapolator) represents its number of degrees of freedom or complexity. In more

complex media, the corresponding matrix for the low-rank approximation becomes

more challenging, demanding higher ranks for an adequate representation. And each

rank demands one inverse Fourier transform (iFFT) in space.

Another notable numerical method is the Poynting vector method. As the disper-

sion relation contains operations among wavenumbers, Xu and Zhou (2014) proposed

to transform the wavenumber vector k to the propagation direction vector n to re-
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duce the computational complexity, where n = k
|k| . And n can be computed by

n = − ∇p
|∇p| where p is the wavefield. Though the original papers by Xu and Zhou

(2014) did not mention the term Poynting vector, we name it the Poynting vector

method as it adopts the idea of Poynting vector to compute the phase angle, similar

to Schaeken et al. (2022) for a non-reflecting wave equation. Zhang and Ohen (2022)

used the same approach and only k in the auxiliary variable vsz of the wave equa-

tion was converted to n. The method of the Poynting vector is efficient as only the

first-order derivatives are needed to compute the phase direction vector. However,

the Poynting vector is not accurate for the approximation of the phase angle when

the interference is strong as mentioned in Schaeken et al. (2022).

We have mentioned two famous numerical examples to solve the mixed-domain

problem in the pure-P-wave equation for TI media, the low-rank approach and the

Poynting method. The low-rank method is highly accurate if we keep enough ranks.

But the number of iFFTs in space is dependent on the medium heterogeneity in

the low-rank approach, which is not always cheap. The Poynting vector method

may suffer from interference issues, though it is generally cheap. In this study, we

seek a solution that remains independent of heterogeneity and is unaffected by in-

terference. Our investigation begins with the acoustic VTI wave equation proposed

by Stovas et al. (2020). The computational cost associated with the anellipticity

term in the acoustic wave equation Stovas et al. (2020) is substantial using the hy-

brid finite-difference/pseudospectral method due to the presence of the mixed space-

wavenumber term (anellipticity term). To address this, we leverage the assumption
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of weak anellipticity (η) and approximate the anellipticity term using a Taylor series.

This approximation effectively decouples the space-dependent material properties

from the wavenumbers, eliminating the need for the low-rank approach or the Poynt-

ing vector method. Subsequently, we employ a hybrid finite-difference/pseudospectral

method to solve the equation (Zhan et al., 2013). At each time step for a 2D case,

only one Fast Fourier Transform (FFT) in space, two inverse Fast Fourier Trans-

forms (iFFTs) in space, and additional spatial differentiations by the finite-difference

method are required, ensuring computational efficiency. By employing this approach,

we achieve a feasible cost in computational complexity while maintaining accurate

and interference-free solutions.

In the Section Theory, we show how we derive the pure acoustic wave equation for

VTI media first. We demonstrate that the coupled space-wavenumber term, as in the

anellipticity term by Stovas et al. (2020), causes some numerical difficulties in solving

the wavefield. Then the anellipticity term is approximated by the Taylor series with

decoupled space and wavenumbers. We propose a new acoustic TTI wave equation

based on this. In the Section Numerical Examples, the kinematics error is compared

first between the proposed method and the methods by Chu et al. (2011), Zhang

et al. (2011), Pestana et al. (2012) and Stovas et al. (2020). Then we present the

wavefield extrapolator comparisons between the low-rank method and our approach.

Following this, we show the wavefield benchmark, between the proposed method

and those methods (Alkhalifah, 2000; Zhang and Ohen, 2022), for the homogeneous

Greenhorn shale. We also use a wedge model and a checkerboard model with multiple
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sources to test the stability and accuracy of our proposed method and that of Zhang

and Ohen (2022). Following are some applications, such as RTM for a 2D modified

Hess model and wavefield simulation and RTM for a modified 3D EAGE/SEG Salt

model. Following this we discuss the importance of performing the space-wavenumber

separation, the advantage of our proposed equation, and the necessity of including

TTI anisotropic parameters in RTM.

THEORY

A 2D acoustic VTI medium

We recall the 2D VTI elastic velocity-stress P-SV Christoffel wave equation in xh-x3

plane, symmetry axis parallel to x3-direction, and in (ω,k) domain (Carcione, 2007),

−iωu(ω,k) = Wu(ω,k) , (1)

where

u =

[
σhh σ33 σh3 vh v3

]T
,

W =



0 0 0 C11ikh C13ik3

0 0 0 C13ikh C33ik3

0 0 0 C44ik3 C44ikh

1
ρ
ikh 0 1

ρ
ik3 0 0

0 1
ρ
ik3

1
ρ
ikh 0 0


,

(2)

where ρ is the material density; Cij is the material stiffness; σij is the stress; vi is the

particle velocity; k = [kh k3]
T is the wavenumber; i2 = −1.
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As equation 1 has a non-zero solution for u, we have the following characteristic

equation,

det(W + iωI) = 0 . (3)

Equation 3 can be written in the following form,

f = v4 + bv2 + c = 0 , (4)

with v = ω

|k|
being the phase velocity and |k|2= k2

h + k2
3.

Equation 4 has two solutions relative to v2, corresponding to P- and SV-wave

modes,

v2 =
−b±

√
b2 − 4c

2
, (5)

This is the exact solution of the phase velocities and the sign + is for P-wave and −

for SV-wave.

Now we introduce the density normalized stiffness, Aij =
Cij

ρ
, and

η =
(A11 − A44)(A33 − A44)− (A13 + A44)

2

2 ((A33 − A44)A44 + (A13 + A44)2)
. (6)

Then we can parameterize equation 4 in A11, A33, A44 and η with

b = −[(A11 + A44)n
2
h + (A33 + A44)n

2
3] ,

c = A11A44n
4
h +

(
A11A44 + 2ηA11A33

1 + 2η
+ A33A44

)
n2
hn

2
3 + A33A44n

4
3 ,

(7)

with nh = cos(θ) = kh
|k|

, n3 = sin(θ) = k3
|k|

and θ being the angle between the prop-

agating direction and x3-direction, counterclockwise. One classic analytical acoustic

approximation (Alkhalifah, 2000) corresponds to A44 = 0 and contains S-wave ar-

tifacts because equation 4 still contains two wave modes, as shown in equation 5.

10



A better way to approximate is to set the phase velocity of the S-wave to be zero

along all propagating directions (Stovas et al., 2020). As the P-wave phase velocity is

weakly dependent on A44 (Alkhalifah, 2000; Tsvankin and Thomsen, 1994; Alkhali-

fah, 1998b), we can set c(A44 = Ã44) = 0 and get a new bp = b(A44 = Ã44). By doing

so, the new fp = f(A44 = Ã44) only has one propagating wave mode, which is the

P-wave approximation. The modified f is now given in the following form,

fp = v2 + bp = 0 , (8)

with

bp = −A11n
2
h − A33n

2
3 +D(n2

h + n2
3) ,

D =
2ηA11A33n

2
hn

2
3

(1 + 2η)A11n4
h + (A11 + (1 + 2η)A33)n2

hn
2
3 + (1 + 2η)A33n4

3

.

(9)

This acoustic approximation is identical to equation 12 in Stovas et al. (2020).

With equation 9, a formulation of the wave equation can be derived for P-wave

pressure p(t,x)

∂2p

∂t2
= A11

∂2p

∂x2
h

+ A33
∂2p

∂x2
3

−D(x,n)∇2p, (10)

where x = [xh x3]
T is the location coordinate and n = [nh n3]

T is the phase direc-

tion vector. As the Poynting vector represents the phase direction of the dominant

wavefield (Yoon et al., 2011), n can be approximated by the Poynting vector. The

Poynting vector for the acoustic wave equation is defined by s = −∂p
∂t
∇p. And then,

n ≈ s
|s| = − ∇p

|∇p| . Since the sign of n does not affect the solution of the wavefield,

Xu and Zhou (2014) used a different sign for n. This method is only valid when the

interference is negligible. The method has also been applied to solve the pure acoustic

wave equation for TTI media (Zhang and Ohen, 2022).
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Now, we will explain why the wave equation directly obtained by equation 8 is not

cheap to solve by the hybrid finite-difference/pseudospectral method. We multiply

k2 on both sides of equation 8 and assign P-wave pressure p(ω,k),

(−iω)2p =− bp(ik)
2p

=
(
A11(ikh)

2 + A33(ik3)
2 − w

)
p ,

(11)

where

w =
2ηA11A33k

2
hk

2
3(k

2
h + k2

3)

(1 + 2η)A11k4
h + (A11 + (1 + 2η)A33) k2

hk
2
3 + (1 + 2η)A33k4

3

. (12)

Then under the assumption of weak variation of the material properties, the so-

lution for p(t,x) is,

∂2p

∂t2
= A11

∂2p

∂x2
h

+ A33
∂2p

∂x2
3

−
∫
Ωk

w(x,k)F(p)(k) exp(ik · x)dk , (13)

where F corresponds to the fast Fourier transform in space (FFT), Ωk is the full space

of k, and p(t,k) = F (p(t,x)) =
∫
Ωx

p(t,x) exp(−ik ·x)dx where Ωx is the full space

of x.

The third term of this equation contains mixed (x,k) domain, and the integral

operator is expensive to evaluate as generally one iFFT in space is required for each

grid point.

A cheaper solution is the low-rank approximation to w and then the number of

iFFTs in space is the same as the ranks. According to Song and Alkhalifah (2013),

If one model exhibits serious roughness and randomness, the ranks will end up being

large, thus making it computationally expensive.
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An approximation to the anellipticity term

In this study, we choose the hybrid finite-difference/pseudospectral method. As of

now, the only numerical difficulty is caused by w on the right-hand-side of equation

13, which is a function of coupled space (x) and wavenumber (k). We aim to decouple

space-dependent material properties and wavenumbers in w so that∫
Ωk

w(x,k)F(p)(k) exp(ik · x)dk

≈
∫
Ωk

N∑
i

w1i(x)w2i(k)F(p)(k) exp(ik · x)dk

=
N∑
i

w1i(x)

∫
Ωk

w2i(k)F(p)(k) exp(ik · x)dk

=
N∑
i

w1i(x)F
−1 (w2i(k)F(p)(k)) ,

(14)

where w1 = [w11 w12 ... w1N ]
T only contains material properties, varying with space;

w2 = [w21 w22 ... w2N ]
T only contains wavenumbers; F−1 corresponds to iFFT in

space; N is the number of separated terms, as well as the number of the iFFTs

required at each time step. The operation in equation 14 is indicating in equation 9,

D(x,n)(n2
h + n2

3) ≈
N∑
i

D1i(x)D2i(n) . (15)

In this study, we achieve the approximation in equation 15 using Taylor series

under the assumption of weak anisotropy. This is equivalent to decoupling x and

k in equation 14 analytically. The corresponding numerical method for the acoustic

wave equation will depend on the material heterogeneity.
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We construct a functional to approximate D(x,k)(n2
h + n2

3) in equation 9,

g(h1, h2, h3) =
q4n

2
hn

2
3(n

2
h + n2

3)

h1n4
h + h2n2

hn
2
3 + h3n4

3

, (16)

where q4 = 2ηA11A33. Then

D(x,n)(n2
h + n2

3) =g(q1, q2, q3)

≈g(q5, 2q5, q5)

+
∂g(q5, 2q5, q5)

∂h1

(q1 − q5) +
∂g(q5, 2q5, q5)

∂h2

(q2 − 2q5)

+
∂g(q5, 2q5, q5)

∂h3

(q3 − q5)

=
q4
q5

n2
hn

2
3

n2
h + n2

3

+
q4(q5 − q1)

q25

n6
hn

2
3

(n2
h + n2

3)
3

+
q4(2q5 − q2)

q25

n4
hn

4
3

(n2
h + n2

3)
3
+

q4(q5 − q3)

q25

n2
hn

6
3

(n2
h + n2

3)
3

=
N∑
i

D1i(x)D2i(n) ,

(17)

where q1 = (1 + 2η)A11, q2 = A11 + (1 + 2η)A33, q3 = (1 + 2η)A33, q5 is a scalar

to be chosen, N = 4, D11 = q4
q5
, D12 = q4(q5−q1)

q25
, D13 = q4(2q5−q2)

q25
, D14 = q4(q5−q3)

q25
,

D21 =
n2
hn

2
3

n2
h+n2

3
, D22 =

n6
hn

2
3

(n2
h+n2

3)
3 , D23 =

n4
hn

4
3

(n2
h+n2

3)
3 , and D24 =

n2
hn

6
3

(n2
h+n2

3)
3 . It is found that

q5 = q3 results in a low approximation error. An additional advantage of doing this

is that this canceled the last term in equation 17, which reduces the computational

burden. Equation 17 successfully separates material properties and wave propagation

directions, which means the condition of equation 14 is fullfiled when equation 17

is transformed into a wave equation. Now the P-wave kinematics with linearized
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anellipticity term is

v2 =A11n
2
h + A33n

2
3

− q4
q5

n2
hn

2
3

n2
h + n2

3

− q4(q5 − q1)

q25

n6
hn

2
3

(n2
h + n2

3)
3

− q4(2q5 − q2)

q25

n4
hn

4
3

(n2
h + n2

3)
3
.

(18)

We can then transform equation 18 back to the (t,x) domain to get the corre-

sponding acoustic wave equation,

∂2p

∂t2
=A11

∂2p

∂x2
h

+ A33
∂2p

∂x2
3

+
q4
q5

∂4

∂x2
h∂x

2
3

F1

+
q4(q5 − q1)

q25

∂8

∂x6
h∂x

2
3

F2

+
q4(2q5 − q2)

q25

∂8

∂x4
h∂x

4
3

F2

(19)

where F1 = F
−1

(
1

k2h+k23
F(p)

)
and F2 = F

−1
(

1
(k2h+k23)

3F(p)
)
.

Equation 19 is our proposed acoustic wave equation for a VTI medium. The

spatial dependency and wavenumbers are decoupled. qi(i ∈ {1, 2, ..., 5} only con-

tains material properties. The wavenumber components are merged into the spatial

derivatives, F1 and F2. This separation is based on the above Taylor series, per-

forming competitive accuracy compared to some existing acoustic approximations

for VTI media in the later accuracy analysis. It is also beneficial for the hybrid

finite-difference/pseudospectral method due to the decoupled material properties and

wavenumber components.
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An acoustic TTI medium

With equation 18, one can approximate the acoustic kinematics in weakly anelliptic

VTI media. Now we can expand it to a generalized TTI media bynh

n3

 →

cos(α) − sin(α)

sin(α) cos(α)


nh

n3

 , (20)

where α is the counterclockwise rotation angle of the symmetry axis of the TI media

relative to the positive x3-axis.

One can apply the transform in equation 20 to equation 18 and obtain the ap-

proximated P-wave kinematics for a TTI medium,

v2 =
(
A11 cos

2(α) + A33 sin
2(α)

)
n2
h

+ (A33 sin(2α)− A11 sin(2α))nhn3

+
(
A33 cos

2(α) + A11 sin
2(α)

)
n2
3

+
(q4 − q4 cos (4α))

8q3

n4
1

n2
h + n2

3

+
4 q4 sin (4α)

8q3

n3
hn3

n2
h + n2

3

+
2 q4 + 6 q4 cos (4α)

8q3

n2
hn

2
3

n2
h + n2

3

− 4 q4 sin (4α)

8q3

nhn
3
3

n2
h + n2

3

+
q4 − q4 cos (4α)

8q3

n4
4

n2
h + n2

3

+
9∑

i=1

Qi
n9−i
1 ni−1

3

(n2
h + n2

3)
3 ,

(21)

where Qi(i ∈ {1, 2, ..., 9}) are given in Appendix A and they are only functions of

space.
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Equation 21 corresponds to a wave equation,

∂2p

∂t2
=
(
A11 cos

2(α) + A33 sin
2(α)

) ∂2p

∂x2
h

+ (A33 sin(2α)− A11 sin(2α))
∂2p

∂xh∂x3

+
(
A33 cos

2(α) + A11 sin
2(α)

) ∂2p

∂x2
3

+
(q4 − q4 cos (4α))

8q43

∂4F1

∂x4
h

+
4 q4 sin (4α)

8q43

∂4F1

∂x3
h∂x3

+
2 q4 + 6 q4 cos (4α)

8q43

∂4F1

∂x2
h∂x

2
3

− 4 q4 sin (4α)

8q43

∂4F1

∂xh∂x3
3

+
q4 − q4 cos (4α)

8q43

∂4F1

∂x4
3

+
9∑

i=1

Qi
∂8F2

∂x9−i
h ∂xi−1

3

.

(22)

Equation 22 is the acoustic wave equation for TTI media we propose in this

paper. In the numerical solution, the spatial derivatives can be discretized by the

finite-difference method. The 9-point centered finite-difference scheme is used for

each spatial direction, regardless of the derivative order. Then the mixed space

derivatives can be constructed based on the scheme. We use a 3-point centered

finite-difference scheme for time discretization. The evaluations for F1 and F2 require

one FFT and two iFFTs in space. Thus, to solve equation 19, one needs the hybrid

finite-difference/pseudospectral method.

To extend equation 22 to 3D, there are 3 steps: (1) We substitute n2
h = n2

1 + n2
2

into equation 18, where 1 and 2 are the x1- and x2- directions in 3D. As such, the 2D
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kinematics for a VTI medium of our proposed method is extended to 3D. (2) Another

rotation transform is needed to derive the acoustic TTI kinematics,
n1

n2

n3

 →


cos(α) 0 sin(α)

0 1 0

− sin(α) 0 cos(α)




cos(β) − sin(β) 0

sin(β) cos(β) 0

0 0 1




n1

n2

n3

 , (23)

where β is the azimuth angle relative to positive x2-axis, counterclockwise. (3) The

3D acoustic TTI wave equation can be obtained using the same procedure as the

2D case. However, an explicit 3D acoustic TTI equation is not provided due to the

inherent complexity involved in its expression. A 3D example including wavefield

simulation and RTM is given in Appendix B.

At each time step, the finite-difference scheme expands the computational domain

4 grids in all of the directions and the pseudospectral method expands the computa-

tional grids infinitely in space. So, the bottom line of the stability is dependent on the

finite-difference method. According to Kelly et al. (1976) and Alkhalifah (2000), the

Courant-Friedrichs-Lewy (CFL) condition of our hybrid finite-difference/pseudospectral

is
√
2max(v)∆t

4min(∆xh,∆x3)
< 1 for 2D and

√
3max(v)∆t

4min(∆x1,∆x2,∆x3)
< 1 for 3D, where ∆t is the time grid

spacing and ∆xi (i ∈ {h, 1, 2, 3}) is the spatial grid spacing.

The true 2D acoustic TTI solution

For benchmarking, we also need to compare our proposed method and some existing

methods together with the exact solution of the acoustic TTI wavefield. We start

from equation 5 with sign + for P-wave mode. Plugging equation 20 into equation 5,
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we obtain the exact solution of the acoustic TTI kinematics. Similar to the process

to obtain our proposed TTI acoustic wave equation, the acoustic TTI wave equation

for the exact solution is derived. The exact solution of p(t,x) is given by,

∂2p

∂t2
=

∫
Ωk

H(x,k)F(p)(k) exp(ik · x)dk , (24)

where

H =
b̃−

√
b̃2 − 4c̃

2
,

b̃ =−
(
(A11 + A44)(kh cos(α)− k3 sin(α))

2 + (A33 + A44)(kh sin(α) + k3 cos(α))
2
)
,

c̃ =A11A44(kh cos(α)− k3 sin(α))
4 +

(
A11A44 + 2ηA11A33

1 + 2η
+ A33A44

)
(kh cos(α)− k3 sin(α))

2(kh sin(α) + k3 cos(α))
2 + A33A44(kh sin(α) + k3 cos(α))

4 ,

(25)

In an arbitrary medium, an iFFT in space is required for each grid point of x. How-

ever, normally, there are some grid points with the same material properties, and

only one iFFT in space is needed for the region with identical material properties.

Equation 24 is used for the exact wavefield in the numerical examples. H is the wave-

field extrapolator and can be used for accuracy analysis (Details given in Numerical

Examples).

NUMERICAL EXAMPLES

A VTI kinematics benchmark

We initiated our study by examining the P-wave kinematics as defined in equation

18. To provide comprehensive comparisons, we referenced several other works (Stovas
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et al., 2020; Chu et al., 2011; Zhang et al., 2011; Pestana et al., 2012). In particular,

we adopted equation 12 from Stovas et al. (2020), equation 20 from Chu et al. (2011),

equation 14 from Zhang et al. (2011), and equation 22 from Pestana et al. (2012) for

calculating P-wave phase velocities, aligning our methodology with these established

references. Equation 18 offers our solution for the P-wave phase velocity in VTI

media.

Greenhorn shale (Jones and Wang, 1981) is used to benchmark the accuracy of

the kinematics of our proposed solution and some other solutions (Figure 1). It is

shown that our proposed solution has an accuracy similar to that proposed by Stovas

et al. (2020), both of which perform better than the solution by Pestana et al. (2012),

Chu et al. (2011), and Zhang et al. (2011).

[Figure 1 about here.]

We further test the proposed phase velocity solution for 1000 randomly generated

samples. The relative errors along all directions are stacked over those samples (Figure

2). It is found that our proposed method retains high accuracy among the other

compared methods.

[Figure 2 about here.]

A wavefield extrapolator comparison to the low-rank approach

The example in this subsection illustrates a wavefield extrapolator comparison be-

tween our approach and the low-rank method. We have selected a velocity model
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with varying properties along the x3-axis (see Figure 3). Solving for the true acoustic

wavefield in a general heterogeneous TTI medium is infeasible, so we focus on com-

puting the wavefield extrapolator H at specific locations (Figure 4), as defined by

equation 24.

In our experiment, we set the rank to 4 for both x and k (Fomel et al., 2013).

The rank was adjusted until the low-rank approximation demonstrated performance

comparable to our proposed method: the maximum absolute value of the relative

error for both methods falls within a similar magnitude. Figure 4 shows the accuracy

of the wavefield extrapolator by our proposed method and the low-rank method.

The relative error is computed using Happ−Htrue

|Htrue| , where Happ is an approximation of

the wavefield extrapolator H and Htrue is the true solution. Our proposed method

evidently outperforms the low-rank approach at shallower depths but becomes less

competitive at greater depths. For solving the corresponding wavefields by the two

methods, 4 iFFTs are necessary in the low-rank approximations, and only 2 iFFTs

are needed in our proposed method.

[Figure 3 about here.]

[Figure 4 about here.]

A wavefield test for the Greenhorn shale

We assessed the accuracy of wavefield simulations in a homogeneous medium compris-

ing Greenhorn shale, comparing our method to other existing approaches (Alkhalifah,
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2000; Zhang and Ohen, 2022). In Figure 5, it is evident that all methods provide ac-

curate approximations of the acoustic wavefield, except for the case in Figure 5 from

Alkhalifah (2000), which exhibits S-wave artifacts. While S-wave artifacts are typi-

cally minor in scenarios where the source is located in a weakly anelliptic medium,

eliminating them remains vital for stable acoustic wavefield simulations in TTI media

with varying tilt angles (α). Our proposed method, as depicted in Figure 6, showcases

the highest accuracy for this particular profile.

[Figure 5 about here.]

[Figure 6 about here.]

A wedge model

To demonstrate the stability of our proposed TTI acoustic wave equations under

varying α and negative η, we generated wavefields for a wedge-shaped medium and

compared our method to Zhang and Ohen (2022). The acoustic TTI wavefield derived

from Alkhalifah (2000) is not shown due to instability. The wedge medium is depicted

in Figure 7 and contains negative η (see Figure 7a).

Figure 8 shows that both our method and the approach by Zhang and Ohen (2022)

maintain stable solutions on this wedge model, even in the presence of negative η and

rapid changes in α. The shot gathers in Figure 9 also demonstrate that both of the

two approximations are reliable while our proposed method is more accurate than

Zhang and Ohen (2022) according to 9d.

22



We also benchmarked computational time for this model, using a spatial dis-

cretization of 200x200 and 5000 time steps. On a workstation with an AMD EPYC

7302P CPU and 128 GB RAM, Zhang and Ohen (2022) took 91 seconds per shot,

while our proposed method required 103 seconds. The method by Zhang and Ohen

(2022) proves slightly more time-efficient.

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

An interference test

As previously mentioned, the Poynting vector provides an approximation of the dom-

inant phase directions for the acoustic wavefield. Methods such as Zhang and Ohen

(2022) and Xu and Zhou (2014) may lack accuracy when interference is strong. In

this test, we demonstrate that our method is not affected by this issue.

We created a scenario where three sources were simultaneously activated (referred

to as p for this case). The wavefield was calculated for each source and then stacked

together as psta. When interference does not affect the solution, psta equals p. We

conducted this experiment using the model shown in Figure 10, where the three

sources can induce wavefield interference.
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We compared our proposed method with one of the Poynting methods, Zhang and

Ohen (2022). Figure 11 displays the shot gather, showcasing both p and psta. Gen-

erally, both methods yield similar wavefield solutions. However, a slight interference

issue is observed in Figure 11f for Zhang and Ohen (2022), whereas our proposed

method demonstrates identical seismograms for p and psta.

[Figure 10 about here.]

[Figure 11 about here.]

An application to 2D RTM

To show the reliability of the proposed equation, we use a modified TTI version of

the Hess model (Figure 12). The imaging condition is calculated using

I(x) =
1

Ns

Ns∑
i=1

∫
Ωt

piu(x, t)p
i
d(x, t)dt∫

t
pid(x, t)

2
, (26)

where I is the reflectivity image; Ωt is the full space of t; s is the source index; Ns is

the source numbers; pu is the upgoing wavefield and pd is the downgoing wavefield.

The wavefield must be simulated until the wave energy populates all simulation grids

to ensure the zero division problem in the imaging condition. The observed data is

computed using our proposed acoustic TTI equation from the model in Figure 12.

For TTI RTM, both pd and pu are calculated using the model in Figure 12, but α = 0

for VTI RTM and η = 0 for elliptic RTM.

[Figure 12 about here.]
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Figure 13b displays the migration results. To evaluate the significance of the

tilt angle (Figure 13c) and anellipticity (Figure 13d), we introduced several imper-

fections in the migration process. For reference, Figure 13a represents the vertical

differentiation of the model A33, revealing the true interfaces.

Notably, the TI migration in Figure 13b produces the clearest image. However,

due to inaccurate wavefield simulations, Figures 13c and 13d exhibit more migration

noise and a loss of reflector accuracy.

Another example including wavefield simulation and RTM for the modified 3D

EAGE/SEG Salt model is given in Appendix B.

[Figure 13 about here.]

DISCUSSIONS

We propose a new acoustic TTI wave equation. We start from the acoustic approx-

imation by Stovas et al. (2020) for VTI media. The Christoffel equation of the new

acoustic wave equation only contains the P-wave propagating mode, so it lacks S-

wave artifacts. However, the acoustic wave equation by Stovas et al. (2020) has a

coupled (x,k) anellipticity term, so it is not cheap to solve with the hybrid finite-

difference/pseudospectral method. A treatment of the anellipticity term using Taylor

series can decouple the space and wavenumber dependencies analytically, then the hy-

brid finite-difference/pseudospectral method can be applied. For a 2D case, only one

FFT in space, two iFFTs in space, and additional spatial differentiations using the
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finite-difference method are required at each time step. This method is not dependent

on media heterogeneity and is not prone to wavefield interference.

In the kinematics analysis and the wavefield extrapolator comparison, we show

that our proposed method has a competitive accuracy. Followed by the stability test

of a wedge model and the interference test, our proposed method is stable under fast

change of α, negative η, and is not affected by the interference issues. Those factors

are key for an accurate and stable acoustic TTI wavefield simulation. We compare

the computational cost of our proposed method with one of the cheap Poynting vec-

tor methods. Our proposed method is not much more expensive than the efficient

Poynting vector method while retaining more accuracy in certain circumstances.

The RTM example shows the necessity to include anellipticity η and tilt angle

of the symmetry axis α in seismic imaging to avoid losing information. However,

including more physical properties in the method application is more computationally

expensive. For instance, including the anellipticity term requires special treatment to

separate the space and wavenumbers. The tilt angle of the symmetry axis complicates

the spatial derivatives.

CONCLUSIONS

This paper presents a new acoustic wave equation for TTI media. Its solution does

not suffer from S-wave artifacts. The equation is obtained by applying a Taylor

series expansion to the anellipticity term of the existing pure P-wave equation with a

rotation to the wavenumber vector. Numerically, the acoustic TTI wave equation can
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be solved by the hybrid finite-difference/pseudospectral method. This method is not

expensive and maintains high accuracy. The wavefield solution always appears stable

and devoid of artifacts, even for challenging media with fast-changing tilt angles.

The RTM for the 2D modified Hess model demonstrates the necessity of considering

the ellipticity and tilt angle for the TI media. The example for the modified 3D

EAGE/SEG Salt model demonstrates the method is applicable to 3D. As a result,

our proposed acoustic TTI wave equation holds considerable promise for advancing

seismic imaging and analysis in scenarios where Earth’s subsurface exhibits the utmost

complexity and variability.
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APPENDIX A

COEFFICIENTS

Coefficients Qi(i ∈ {1, 2, ..., 9}) in equations 21 and 22 are giben by,

Q1 =
128

q23
(11 q3 q4 − 3 q2 q4 − 5 q1 q4 − σ37 + σ34 + σ33 + σ31 + σ30 − σ26 + σ36 − σ28 − σ35 + σ32) ,

Q2 =
128

q23
(σ17 − σ3 − σ16 − σ2 − σ10 + σ1 − σ15 + σ9 + σ14 − σ13) ,

Q3 =
128

q23
(44 q3 q4 − 12 q2 q4 − 20 q1 q4 − σ29 − σ25 + σ27 − σ24 − σ19 + σ20 − σ23 + σ18 + σ22 − σ21) ,

Q4 =
128

q23
(σ12 − σ3 − σ11 − σ2 + σ8 + σ1 + σ7 − σ6 − σ5 + σ4) ,

Q5 =
128

q23
(66 q3 q4 − 18 q2 q4 − 30 q1 q4 − 40 q1 q4 cos (4α)− 40 q2 q4 cos (4α) + 120 q3 q4 cos (4α)

+ 70 q1 q4 cos (8α)− 70 q2 q4 cos (8α) + 70 q3 q4 cos (8α)) ,

Q6 =
128

q23
(σ12 + σ3 − σ11 + σ2 + σ8 − σ1 − σ7 − σ6 + σ5 − σ4) ,

Q7 =
128

q23
(44 q3 q4 − 12 q2 q4 − 20 q1 q4 + σ29 − σ25 − σ27 − σ24 + σ19 + σ20 − σ23 − σ18 + σ22 − σ21) ,

Q8 =
128

q23
(σ17 + σ3 − σ16 + σ2 − σ10 − σ1 + σ15 + σ9 − σ14 + σ13) ,

Q9 =
128

q23
(11 q3 q4 − 3 q2 q4 − 5 q1 q4 + σ37 + σ34 − σ33 + σ31 − σ30 − σ26 + σ36 + σ28 − σ35 + σ32) ,

(A-1)
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where σi(i ∈ {1, 2, ..., 37}) are given by,

σ1 = 48 q3 q4 sin (4α) , σ2 = 16 q2 q4 sin (4α) ,

σ3 = 16 q1 q4 sin (4α) , σ4 = 56 q3 q4 sin (8α) ,

σ5 = 56 q2 q4 sin (8α) , σ6 = 56 q3 q4 sin (6α) ,

σ7 = 56 q1 q4 sin (8α) , σ8 = 56 q1 q4 sin (6α) ,

σ9 = 24 q3 q4 sin (6α) , σ10 = 24 q1 q4 sin (6α) ,

σ11 = 24 q3 q4 sin (2α) , σ12 = 24 q1 q4 sin (2α) ,

σ13 = 8 q3 q4 sin (8α) , σ14 = 8 q2 q4 sin (8α) ,

σ15 = 8 q1 q4 sin (8α) , σ16 = 8 q3 q4 sin (2α) ,

σ17 = 8 q1 q4 sin (2α) , σ18 = 56 q3 q4 cos (6α) ,

σ19 = 56 q1 q4 cos (6α) , σ20 = 48 q3 q4 cos (4α) ,

σ21 = 28 q3 q4 cos (8α) , σ22 = 28 q2 q4 cos (8α) ,

σ23 = 28 q1 q4 cos (8α) , σ24 = 16 q2 q4 cos (4α) ,

σ25 = 16 q1 q4 cos (4α) , σ26 = 12 q3 q4 cos (4α) ,

σ27 = 8 q3 q4 cos (2α) , σ28 = 4 q3 q4 cos (6α) ,

σ29 = 8 q1 q4 cos (2α) , σ30 = 4 q1 q4 cos (6α) ,

σ31 = 4 q2 q4 cos (4α) , σ32 = q3 q4 cos (8α) ,

σ33 = 4 q3 q4 cos (2α) , σ34 = 4 q1 q4 cos (4α) ,

σ35 = q2 q4 cos (8α) , σ36 = q1 q4 cos (8α) ,

σ37 = 4 q1 q4 cos (2α) .

(A-2)
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APPENDIX B

A 3D EXAMPLE

We perform a 3D numerical experiment in this section. Our proposed 2D acoustic

TTI wave equation is extended to 3D using the procedure given in Subsection An

acoustic TTI medium. The EAGE/SEG Salt model is modified. As the original 3D

EAGE/SEG Salt model is isotropic, we add to its complexity by introducing some

anisotropic TTI parameters (Figure 14). Figure 15 is an example of the wavefield and

Figure 16 is the RTM image.

[Figure 14 about here.]

[Figure 15 about here.]

[Figure 16 about here.]
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Figure 1: The P-wave kinematics for Greenhorn shale. A11 = 1.447× 107 Pa m3/kg,
A33 = 9.57× 106 Pa m3/kg, A13 = 4.51× 106 Pa m3/kg, A44 = 2.28× 106 Pa m3/kg,
thus, η = 0.3409. (a) Exact P-wave phase velocity. (b) Relative error of the estimated

P-wave phase velocity Er =
|vest−vexa|

|vexa| , where vest is the estimated solution and vexa is
the exact solution.
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Figure 2: The average stacked relative error of the estimated P-wave phase velocity
for randomly generated 1000 VTI samples using a uniform distribution. The stacking
is performed for each phase angle. A11 ∼ U(1.1×107 Pa m3/kg, 1.7×107 Pa m3/kg),
A33 ∼ U(7× 106 Pa m3/kg, 1.25× 107 Pa m3/kg), A13 ∼ U(1.5× 106 Pa m3/kg, 3×
106 Pa m3/kg), A44 ∼ U(3.5× 106 Pa m3/kg, 4.5× 106 Pa m3/kg). U is for uniform
distribution. Thus η ∈ [−0.2475, 0.7100] in our experiment.
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Figure 3: The model for comparison to the low-rank approach, which is only a function
of x3.
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Figure 4: The acoustic wavefield extrapolators H for the model given in Figure 3.
(a) - (c) are for the location xh = 30 m, x3 = 100 m. (d) - (f) are for the location
xh = 30 m, x3 = 500 m. (g) - (i) are for the location xh = 30 m, x3 = 900 m. (a),
(d), and (g) are the true solutions. (b), (e), and (h) are the relative errors of the
low-rank approach, solved with 4 ranks for x and k, respectively. (c), (f), and (i) are
the relative errors of our proposed solutions.
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Figure 5: The acoustic wavefield for the Greenhorn shale at 0.5 s. The red down-
pointing triangle in (a) is the source. The source signature is Ricker wavelet, 10 Hz.
(a) Exact solution. (b) VTI wavefield by Alkhalifah (2000). (c) VTI wavefield by
Zhang and Ohen (2022). (d) Proposed VTI solution. (e) Proposed TI solution with
α = π/6.
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Figure 6: The profile at xh = 1600 m for Figure 5 a-d.
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Figure 7: The wedge model. (a) η. (b) α. The other parameters are set homogeneous
along the space. A11 = 1.4× 107 Pa m3/kg, A33 = 1.0× 107 Pa m3/kg, A44 = 2.0×
106 Pa m3/kg. 30 receivers are placed evenly at xh ∈ [780, 5130] m and x3 = 750m.
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Figure 8: The acoustic wavefield for the model in Figure 7. The source signature is
a Ricker wavelet, 10 Hz. Acoustic approximations (a)(d)(g) are at 0.5 s, (b)(e)(h) at
1 s and (c)(f)(i) at 1.8 s. (a) - (c) are computed by the method of Zhang and Ohen
(2022) and (d) - (f) are from our proposed method. (g) - (i) are exact solutions.
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Figure 9: The shot gather from the wavefield in setup given in Figure 8, (a) for Zhang
and Ohen (2022), (b) for proposed method, (c) for exact solution and (d) differences
between the approximations and the true solution for the receiver index 25.
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Figure 10: The checkerboard model. For white region, A11 = 1.4 × 107 Pa m3/kg,
A33 = 1.0× 107 Pa m3/kg, A44 = 7× 106 Pa m3/kg, η = 0.2, α = π/3. For the black
region, the values of the above parameters are doubled. The down-pointing triangles
are the source locations.

46



Figure 11: The shot gathers for Figure 10. Ricker wavelet, 10 Hz. p is the solution
when 3 sources are shot simultaneously, and psta is the stacked solution for each
shot wavefield, (a) p by our proposed method, (b) psta by our proposed method, (c)
True seismograms for receiver index 15, (d) p by Zhang and Ohen (2022), (e) psta by
Zhang and Ohen (2022), and (f) psta−p for Zhang and Ohen (2022) and the proposed
method.
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Figure 12: The modified Hess model. (a) A11. (b) A33. (c) η. (d) An additional
tilt angle α of the symmetry axis is added to the original Hess model. The down-
pointing triangles are the imaging source locations. 201 receivers are placed evenly
at xh ∈ [1281, 25681] m and x3 = 1342 m.
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Figure 13: The reflectivity images I. Source: Ricker wavelet, 4 Hz. 17 sources are
placed evenly at xh ∈ [1281, 20862] m, x3 = 1342m. The source signature is a Ricker
wavelet, 2 Hz. (a) is the image derived from the vertical differentiation of A33. (b)(c)
and (d) are for TTI, VTI, and elliptic migration images, respectively. In (c) and (d),
artifacts are marked with red arrows and reflector missing accuracies are indicated in
blue .
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Figure 14: The modified 3D EAGE/SEG Salt model. We obtain our acoustic TTI
model by A11 = v2, A33 = 1.4A11, η = 0.2 A11

max(A11)
, α = π

2
A11

max(A11)
, β = 2π A11

max(A11)
,

where v is the original velocity of 3D EAGE/SEG model. (a) Slice at x1 = 4400 m.
(b) Slice at x2 = 4400 m. (c) Slice at x3 = 2800 m. The down-pointing triangles are
the imaging source locations projected on those planes. 216000 receivers are evenly
distributed in this range, x1 ∈ [840, 12640] m, x2 ∈ [840, 12640] m, x3 = 840 m.
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Figure 15: The solution of the wavefield by the proposed method. The source is
placed at [4440 4440 840]T m. Source: Ricker wavelet, 7 Hz. The three rows are
corresponding t = 0.3, 0.4, 0.6 s. The three columns are corresponding to the same
slices with Figure 14 for (a), (b), and (c).
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Figure 16: The RTM image for the model in Figure 14. Same slices with Figure 14
for (a), (b), and (c).
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