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S U M M A R Y
Short-period small magnitude seismograms mainly comprise scattered waves in the form of
coda waves (the tail part of the seismogram, starting after S waves and ending when the noise
prevails), spanning more than 70 per cent of the whole seismogram duration. Corresponding
coda envelopes provide important information about the earth inhomogeneity, which can
be stochastically modeled in terms of distribution of scatterers in a random medium. In
suitable experimental conditions (i.e. high earth heterogeneity), either the two parameters
describing heterogeneity (scattering coefficient), intrinsic energy dissipation (coefficient of
intrinsic attenuation) or a combination of them (extinction length and seismic albedo) can
be used to image Earth structures. Once a set of such parameter couples has been measured
in a given area and for a number of sources and receivers, imaging their space distribution
with standard methods is straightforward. However, as for finite-frequency and full-waveform
tomography, the essential problem for a correct imaging is the determination of the weighting
function describing the spatial sensitivity of observable data to scattering and absorption
anomalies. Due to the nature of coda waves, the measured parameter couple can be seen as
a weighted space average of the real parameters characterizing the rock volumes illuminated
by the scattered waves. This paper uses the Monte Carlo numerical solution of the Energy
Transport Equation to find approximate but realistic 2-D space-weighting functions for coda
waves. Separate images for scattering and absorption based on these sensitivity functions are
then compared with those obtained with commonly used sensitivity functions in an application
to data from an active seismic experiment carried out at Deception Island (Antarctica). Results
show that these novel functions are based on a reliable and physically grounded method to
image magnitude and shape of scattering and absorption anomalies. Their extension to 3-D
holds promise to improve our ability to model volcanic structures using coda waves.

Key words: Tomography; Seismic attenuation; Seismic tomography; Wave scattering and
diffraction.

1 I N T RO D U C T I O N

It is well known since the pioneering works of Aki (1969), Latham
et al. (1970), Aki & Chouet (1975), Sato (1977) and Tsujiura (1978)
that coda waves are generated by elastic scattering from earth het-
erogeneity. Short-period seismic energy envelopes can thus be mod-
eled in terms of scattering and intrinsic absorption parameters in
statistically defined random Earth media. The solution of the Ra-
diative Transfer integrodifferential equation for scalar elastic waves
(see e.g. Sato & Fehler 2008; Sato et al. 2012) provides a suitable

framework to describe these envelopes, including multiple scatter-
ing, as a function of source–receiver distance and time elapsed from
the origin time of the event. Such a solution can be explicitly written
in terms of scattering and intrinsic absorption coefficients, both of
which characterize Earth’s medium in areas crossed by coda waves,
for a half-space (Paasschens 1997).

Recovering the effective spatial sampling of coda waves allows
to locate and measure the magnitude of scattering and absorption
anomalies in 2-D and 3-D media, therefore increasing our abil-
ity to unveil heterogeneous Earth structures and interpret them in
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geological terms (Sato et al. 2012), contributing to complete the
interpretation of total-attenuation images based on the measure of
total-Q of direct P and S waves (see e.g. Prudencio et al. 2015b).

Estimates of intrinsic and scattering coefficients carried out at
several source–receiver pairs using dense networks of seismic sen-
sors generally show large spatial fluctuations and strong dependence
of the two parameters on the source–receiver path. For waves cross-
ing the Japanese crust and upper mantle, Carcolé & Sato (2010)
observe striking examples of these effects. Measuring the real sen-
sitivity of coda waves to spatial changes of attenuation coefficients
is therefore a suitable way to image strong lateral fluctuations and
to correlate them with tectonic structures, yielding geological hints
on the area under study.

However, coda wave imaging has been grounded till now on very
simple assumptions. Xie & Mitchell (1990) describe a backprojec-
tion method based on the single-scattering model. These authors
assume that the parameter deduced by using coda envelopes (Coda
Q, see eq. (A6) in Appendix) is representative of the attenuation av-
eraged inside a scattering ellipse (see Appendix A2 for definitions).
Similar assumptions have been utilized by Calvet et al. (2013) who
studied the area of Pyrenees and by De Siena et al. (2014) at Mt. St.
Helens volcano. These authors assume that Coda Q is only sensitive
to the structures crossed by the source–receiver paths and spatially
smooth their final 2-D images by interpolating Coda Q values at the
eight nearest nodes.

Several studies have proposed more complete and physically
grounded approaches which go beyond first-order scattering ap-
proximations associated with average sensitivity inside the scatter-
ing ellipsoid. Pacheco & Snieder (2005) show how a single weak
velocity anomaly perturbing a diffusive medium produces a mea-
surable change in the coda traveltime, deriving a 2-D sensitivity
function able to locate such an anomaly. De Siena et al. (2013)
model envelopes of seismic traces in volcanic areas using 2-D Ra-
diative Transfer Theory equations and diffusive boundary condi-
tions in the presence of tomographically measured high-scattering
materials. Mayor et al. (2014) calculate 2-D sensitivity kernels for
coda waves in the assumption of isotropic scattering and Margerin
et al. (2016) in case of anisotropically scattering media. The two
above papers describe a rigorous theoretical approach evaluating
the relative intensity variations of coda caused by a localized scat-
tering/absorption anomaly in the framework of Radiative Transfer
Theory. Their results are mainly focused at mapping the spatial
changes in attenuation on the base of coda wave observations from
distributed sources recorded at a seismic network and can be used
to both locate single anomalies and to discriminate absorption from
scattering properties.

Recently, Prudencio et al. (2013a) have used a backprojection
method based on an empirical space-weighting function of the at-
tenuation parameters at given lapse times. Despite the observed im-
provement in resolution, the Gaussian weighting function assumed
by Prudencio et al. (2013a) is only a reasonable approximation of
the true sensitivity. In this study, a method for obtaining a weight-
ing function (in 2-D but extendable in 3-D) based on the Monte
Carlo solution of the Radiative Transfer Theory is described. The
sensitivity of the method to earth structures as well as the imaging
potential of the approach is compared with those of different imag-
ing methods by their concurrent application to active seismic data
recorded at Deception Island volcano in Antarctica.1

1
Throughout this paper the syntactic rules used in Wolfram-Mathematica
software for the use of parentheses are used: square brackets indicate the

Figure 1. An energy particle starts its random path (dashed lines) at the
source (star), encounters several scatterers (grey circles) and arrives at the
receiver (star). At the maximum lapse time, tlapse, the scatterers are located
at the border of the scattering ellipse (black line).

2 M E T H O D

Seismic energy envelopes are well described by the Radiative Trans-
fer model (Sato et al. 2012; see eq. (A2) for 2-D and (A3) for 3-D in
Appendix A3) which is well approximated by the diffusion equation
for highly inhomogeneous earth media. This study proposes a Monte
Carlo approach to solve this equation and obtain space-weighting
functions suitable to estimate and image different attenuation pa-
rameters from coda waves. Following the scheme of Yoshimoto
(2000), the total seismic energy is simulated assuming that a num-
ber, N, of energy particles is emitted randomly but isotropically
from the source. When a single particle encounters a scatterer, it
changes direction randomly in the interval 0–2π (isotropic scatter-
ing). The probability that a particle of unit energy at the source,
E0, encounters a scatterer is given by ηsvt, where ηs = B0Le−1; at
each interaction the fraction of its energy, E/E0 = 1 − Exp[ηivt] ,
where ηi = Le−1(1 − B0), is absorbed by the propagation medium
and transformed into heat (for symbol definitions see Appendix A1
and eq. (A4) in Appendix). After a random number of collisions,
the particle reaches the receiver at a given lapse time measured from
the origin time, t. The energy envelope is finally obtained by the
time histogram of all the particles arriving at the receiver. The value
of the energy envelope (at a given lapse time) is thus the sum of the
energies carried out by the particles at the end of all the scattering
process, altogether arriving in a small time interval around t. The
details of this procedure are reported in Yoshimoto (2000).

Numerous tests (e.g. Del Pezzo & Bianco 2010, and references
therein) demonstrate that the synthetic energy envelopes calculated
with this method assuming a homogeneous (v = constant) half-
space well reproduces the theory given by eq. (A3), in Appendix A3.

The energy particles sample a portion of the propagation medium
associated with the attenuation parameters used in the simulation.
We thus heuristically consider the parameter couple of values cal-
culated by the fit of energy envelope data to eq. (A3), as obtained
via a backprojection in the area (volume in 3-D) of earth medium
sampled by the scattered waves through a weighted average opera-
tion (see the scheme of Fig. 1). In different words, the elements of
area crossed by more particles weight more in the backprojection
procedure.

The weighting functions are determined in the following steps.
The synthetic envelope obtained in the simulation is described by

argument of a function; curly brackets indicate the elements of a matrix;
round brackets indicate an algebraic grouping.
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Figure 2. ni and nsc functions numerically calculated with the parameters in Table 1. Upper two panels: isolines of ni and nsc normalized at their value in the
middle of source–receiver distance. Medium and lower panels represent the section in the planes x = 0.0, x = 2.5 x = 5.0 and y = 0.0. Blue lines represent
nsc and orange lines represent ni. The red line represents the approximation calculated with eq. (1) while the dashed black line represents the Gauss-weighting
function used by Prudencio et al. (2013b) and the dashed green line the strip-like function used by Calvet et al. (2013).

two parameters, one proportional to the density of the scatterers,
ηs = 2π f

vQs
, and the other, ηi= 2π f

vQi
, representing intrinsic absorption

(see also the definitions above in this section). Given a couple of
values {ηs, ηi }, the coordinates of the particle position and the scat-
tering event positions (the points where collisions occur) at any time
step in the simulation are stored in two separate memory registers.
At the end of the simulation procedure, the spatial density of colli-
sions, nsc[x, y], and the path spatial density, ni[x, y], are calculated:
nsc and ni are, respectively, the number of collisions and paths in
an area �x�y , where �x and �y are small coordinate increments;
these two quantities are both proportional to the probability that
�x�y affects the scattering and intrinsic attenuation tuning the en-
ergy envelope. ni and nsc are thus used as weighting functions in the
backprojection method.

In Fig. 2, the 2-D space-weighting functions calculated with this
method are shown for the source–receiver configuration and pa-
rameters reported in Table 1. It is noteworthy that in the range of ηs

values used for our simulations, the value of ηi is inessential for the
determination of the space-weighting functions, as it modifies the

Table 1. Parameters tuning the weighting functions shown
in Fig. 2. δt is the time step used in the simulation. tlapse is
the coda lapse time. xs,ys and xr, yr are source and receiver
coordinates, respectively.

Parameter Value

ηi 0.0 km−1

ηs 0.628 km−1

δt 0.05 s
tlapse 15 s

xs 0.0 km
ys 0.0 km
xr 5.0 km
yr 0.0 km
v 2 km s−1

absolute values without affecting the form of the weighting func-
tion. tlapse is set at 15 s as this is the maximum (max) lapse time
used in data analysis. It is important to note here that the max lapse
time determines the dimension of the scattering ellipse and hence
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the resulting mapping. For different values of maximum lapse time,
new simulations should be carried out in order to re-calculate the
weighting functions.

The two spatial distributions ni and nsc , calculated in 2-D, are
quite similar to each other for a wide set of {ηi, ηs} physically
meaningful couples. In principle, ni and nsc should be calculated
for any couple of ηi and ηs values experimentally measured. How-
ever, calculating these two parameters for a number of {ηi ηs}
couples suitable to stabilize the tomography images is highly time-
consuming. To speed up the procedure, an identical pattern for both
nsc and ni is assumed: nsc = ni = n; then, a simple function of
space coordinates and of {ηi , ηs} parameters, best fitting n for a
large suite of {ηi, ηs} couples, is calculated by trial-and-error. The
explicit form of this approximating function has been evaluated in
the following way.

The numerical weighting functions are first calculated using the
Monte Carlo method for a wide set of feasible parameters and
distances, setting the source at the origin and receiver at a point
on the horizontal axis, at a distance D from the source. While it
is observed that the shape of the weighting functions is insensitive
to ηi, it is clear that it depends on ηs and D. This is the reason
why we set the value of ηi at a low arbitrary value (ηi = 0.0001)
in all simulations. We calculated a suite of weighting functions
considering D spanning from 5 to 20 km and ηs spanning from 0.8
to 0.04, typical values measured in volcanoes (Sato et al. 2012).
The calculation was carried out for a maximum lapse time of 15 s,
using 3 × 105 energy particles and a half-space constant velocity,
v = 2.0 km s−1. Finally, we found a function that fits well the
‘average’ shape of the weighting functions normalized at their value
at the middle point between source and receiver via a trial and error
approach. The function

f [x, y, xr , yr , xs, ys, δx , δy]

= 1

4πδx D2δy
Exp

[
−

(
x − xr +xs

2

)2

2 (δx D)2
+

(
y − yr +ys

2

)2

0.5
(
δy D

)2

]

+ 1

2πδx D2δy
Exp

[
− (x − xs)2

2 (δx D)2
+ (y − ys)2

2
(
δy D

)2

]

+ 1

2πδx D2δy
Exp

[
− (x − xr )2

2 (δx D)2
+ (y − yr )2

2
(
δy D

)2

]

(1)

reasonably fits the numerical weighting functions with δx = δy = 0.2.
δx and δy represent the spatial aperture of the weighting function.
In Fig. 2, the comparison between the numerical result and the
analytical function (1) is shown as an example. The use of this
approximation greatly reduces the computer time.

3 S E PA R AT E AT T E N UAT I O N I M A G E S
F RO M S PA C E W E I G H T I N G F U N C T I O N S
A N D T E S T A P P L I C AT I O N T O R E A L
DATA : D E C E P T I O N I S L A N D

Fitting eq. (A3 or A2, in Appendix) to the observed seismogram en-
ergy envelope for the single source–receiver path one can estimate
the scattering and absorption coefficients in the equivalent couples
of values {B0 , Le−1}{Q−1

i , Q−1
S } or {ηi , ηs} all characterizing

the medium in terms of intrinsic dissipation and scattering atten-
uation, respectively. The fitting procedure applied to all the avail-
able source–receiver couples yields a data set suitable for imaging. F
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Figure 4. Results calculated applying the weighting functions discussed in this paper to the measures of Q−1
i and Q−1

s at Deception Island (n-image). g-image,
s-image and m-image are the images obtained using the Gauss-like weighting, the strip-like weighting and the middle-point weighting functions, respectively.
The coast line of Deception Island (ticker black curve) is superimposed on each plot.

Eq. (A3) can be substituted by mathematically simpler approxima-
tions like the single-scattering approximation in case of a medium
with mean-free path much longer than the average source–receiver
distance (eq. (A6) in Appendix A3), or the diffusion approximation
in the opposite situation (see Sato et al. 2012, eq. (A7) in Appendix
A3). Details on the way of fitting the theoretical relationships (A3,
A6 or A7) to the observed energy envelope data and the uncertainty
associated with the parameter estimates can be found in Prudencio
et al. (2013a).

The values of Q−1
i and Q−1

s for all the N source–receiver couples,
({1/Qm

i , 1/Qm
s }, where m ranges between 1 and N), represents the

coda parameter set. In the kth space cell centred at the point of
coordinates {xk, yk} the probability that the true Q−1

i/s[xk, yk] repre-
sents the characteristic attenuation parameter of the cell {xk, yk}, is
given by 1/Qm

i/s · nm[xk, yk] where nm is the mth weighting function,
characteristic of the mth source–receiver couple.

Its value is thus given by:

Q−1
i/s[xk, yk] =

∑
m(1/Qm

i/s)nm[xk, yk]∑
m nm[xk, yk]

. (2)

Obviously, one can deduce maps of total attenuation, Q−1
T , from

those of Q−1
i and Q−1

s . As anticipated in the Introduction, an equiv-
alent approach (based on Gaussian weighting functions) has been
used to map the Q−1

i and Q−1
s space distributions in Tenerife, Decep-

tion Island and Stromboli volcano (see Prudencio et al. 2015a and
references therein). In the following sections, we test the approach
and compare the results with those from methodologies currently
used in literature.

An example of application of the present method to real data
is provided using the active data set collected at Deception Island
volcano in Antarctica already described by Prudencio et al. (2013b).
We remark here that Prudencio et al. (2013b) used 15 s of max

lapse time in the data analysis, the same value used in this paper
for the numerical simulations. This study provides an exhaustive
description of data set and Gaussian weighting method used for
2-D separate intrinsic- and scattering-attenuation imaging, which
we review in the next section. Results achieved using the present
weighting functions in the 8 Hz frequency band are illustrated in
Fig. 4. In Figs A1_a and A1_b (showing the spatial distributions of
Q−1

i and Q−1
s , respectively, in the Appendix), we report the images

obtained using the new weighting functions in different frequency
bands.

4 D I S C U S S I O N

4.1 Comparison with theoretical sensitivity kernels for
coda wave interferometry and scattering tomography

The present method can be easily extended to 3-D with an obvious
inclusion of z in eq. (2), and used in realistic earth models where ve-
locity, v, and ηs are dependent on the spatial coordinates (Yoshimoto
2000). The application of this method to a 3-D space will be the
topic of a forthcoming paper. The present weighting functions can
be compared with the sensitivity kernels theoretically calculated for
coda waves to locate the anomalies in the propagation medium de-
tectable with coda wave interferometry. Mayor et al. (2014) suggest
that their theoretically calculated sensitivity kernels for coda waves
(see Appendix A4) could be used for both locating attenuation
anomalies and for mapping separately lateral variations in the crust.
In Fig. 3, we reproduce the theoretical sensitivity kernels defined
by Mayor et al. (2014) , Ksc and Kint (see Appendix A4 for defi-
nitions), for the parameters in Table 1. Ksc has been demonstrated
to be useful for greatly improving Nishigami’s method (Nishigami
1991), for searching for the spatial distribution of scatterers (Mayor
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Figure 5. Checkerboard test for n-images (the present method), g-images (Gaussian weighting) and s-images (strip function weighting). Panels (b)–(d)
represent the test for the checkerboard input shown in panel a (a contrast in Q of a factor 20). Panel f report the n-image output for the input shown in panel e
(a contrast in Q of a factor 2).

et al. 2014; Margerin, personal communication, 2015), while Kint

has been recently employed to map Q−1
i measured in the Alps from

Q−1
c estimated for any source–receiver couple (Mayor et al. 2016).

We wish to remark here that ni and nsc have been derived in a
purely empirical way, based on considerations already reported in
Section 2. The observation that the overall shape of nsc calculated in
this paper is completely different from that of Ksc make us cautious
about the ability of nsc to describe the true scattering sensitivity. On
the other hand, we have searched a weighting function for the spatial
backprojection of Q−1

i and Q−1
s , jointly estimated from the single

seismogram, in the assumption of diffusion regime. We found, using
heuristical considerations based on numerical simulations of coda

energy envelopes, that in the diffusion regime the spatial density of
collisions takes the same functional shape of the spatial density of
elementary paths. We thus empirically decided to use this functional
shape to image both intrinsic- and scattering-attenuation parameter
distribution.

4.2 Comparison with results achieved using different
weighting functions

The results obtained using the present weighting function n
(n-images) have been compared with those obtained using the
Gaussian weighting function (Prudencio et al. 2013b) (g-images),
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Figure 6. Spike test for n-, g- and s-images.

the strip-like weighting functions used by Calvet et al. (2013) and
De Siena et al. (2014) (s-images) and the middle point between
source and receiver as described by Singh & Herrmann (1983) and
by Jin & Aki (1988) (m-images). This comparison is shown in
Fig. 4. The mathematical form of the weighting function used for
g-images is described in Prudencio et al. (2013a). It is a Gaussian-
like space function, centred at the middle point between source and
receiver, with a rapid lateral decay. s-images are obtained using as
weighting function a 2-D boxcar, 1 km large around the source–
receiver path (Calvet et al. 2013). To obtain the m-images, we space
averaged the measured values attributed to the middle point of the
source–receiver segment, in a square (1 km side) moving eastward
and northward with steps of 0.5 km and eventually drawing the
isolines. The different panels in Fig. A show that the choice of the
weighting functions modifies the results, introducing blurring ef-
fects. In particular, the m-images show less space smoothing than
those calculated using the other methods. The apparently increased
resolution is a numerical artefact in this last case.

4.3 Resolution tests

Both checkerboard and anomaly tests have been carried out to test
the method proposed in this paper. Being ni and nsc similar in
the present assumptions, we carry on the tests for a generic inverse
quality factor, Q−1. The input data for the tests were calculated on the
base of the checkerboard (or anomaly) Q−1 input values (see colour
scale in Fig. 5). The procedure we have used can be summarized in
the following steps: (1) for any source–receiver couple, we calculate

the space-weighting function using eq. (1) (n-images), the Gaussian
weighting function (g-images) and the strip-like weighting function
(s-images). (2) We multiply the weighting functions thus calculated
for the space distribution of test values (checkerboard or spike) and
calculate their weighted average. We use a grid-step of 0.5 km for
both checkerboard and spike test. (3) We use the weighted average
as input data set for the tests. Squared cells in the checkerboard test
have a side of 3 km; the centre cell in the anomaly test is 4 km wide.
(4) After applying the present method to all the source–receiver
couples, for any space coordinate couple we have thus a set of
weighted Q−1 values. Their weighted average corresponds to the
output value. We also calculate the arithmetical average inside the
scattering ellipse (m-images).

Results are shown in Figs 5 and 6 where in the output the percent
changes respect to the space average of the input values are plotted.
While the present method does not well represent the absolute input
values, it clearly depicts their space variations. It is noteworthy that
the feature of checkerboard input is preserved for the n-images even
for a low contrast (a factor 2) among the Q values in the input cells
(see panels e and f in Fig. 5).

A comparison of the present n-images with the g-images and
s-images is reported. Both (n) and (g) outputs show similar results,
with a good determination of the checkerboard anomalies in the
3 km × 3 km cell, while the (s) output shows instead decreasing
resolution with some blurring. The bias introduced by an approx-
imate weighting function is thus unimportant for g-images while
significant for s-images. In this last case, s-images underestimate
the real imaging capability.
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We remark that no resolution test can be calculated for the mid-
point images (m), as the resolution for these images is completely
determined by the space averaging process underlying the method.
By using the present weighting functions, the anomaly test nicely
reproduces the input anomaly in all cases, while border effects
(brown colour in the northeastern sector) are reduced with respect
to the result of the other methods.

5 C O N C LU S I O N S

In this study, we propose the use of weighting functions ni and
nsc for coda wave backprojection mapping computed via Monte
Carlo solutions of the Energy Transport theory equations. Using
single-station active recordings and a simpler Gaussian equivalent
of the proposed weighting functions, recent studies were able to
separate intrinsic from scattering attenuation at Deception Island
(Prudencio et al. 2013b), Tenerife (Prudencio et al. 2013a) and
Stromboli (Prudencio et al. 2015a) volcanoes.

The Gaussian shape of the function used in the above-mentioned
works is centred at the middle point between source and receiver
and presents a sharp (and somewhat arbitrary) lateral decay both for
scattering-Q and for intrinsic-Q imaging. The resolution and relia-
bility of the novel weighting functions are tested on the Deception
data set used by Prudencio et al. (2013b) and subsequently compared
with those of (1) the Gaussian-like weighting function, (2) the strip-
like weighting function Calvet et al. (2013) and (3) the middle-point
weighting function (Jin & Aki 1988). The novel weighting function
described in this paper are based on an reliable physical model;
on the other hand, the Gauss-like function shows similar results in
terms of shape and value of the anomalies. The difference in shape
and, especially, the value of the anomalies becomes instead relevant
when using the strip-like and middle-point functions. Being the re-
sults obtained at Tenerife, Deception Island and Stromboli based on
the Gauss-like functions, it can be inferred that they are therefore
affected by minor biases that do not change the final interpretation
of the anomalies. Nevertheless, the approach presented here, even
heuristical, is grounded on the solution of equations representing
the physics that underlies different attenuation mechanisms and it
should be therefore preferred to the others.
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A P P E N D I X A

A1 Glossary of symbols

Symbol Explanation

N Number of wave particles in the simulation

ηs Scattering coefficient. g = ηs = 2π f
vQs

where f is
the frequency

v Wave speed

t Lapse time (measured from origin)

ηi Intrinsic-attenuation coefficients. ηi = 2π f
vQi

where f is the frequency

B0 Seismic albedo. B0 = ηs
ηi +ηs

Le Extinction length. Le−1 = ηi + ηs

nsc, ni Space density of scatterers and paths,
respectively

{xs, ys} Source coordinates

{xr, yr} Receiver coordinates

r
√

(xs − xr )2 + (ys − yr )2 source–receiver
distance

δt Time step used in simulations

Qi, Qs Intrinsic and scattering quality factor

Ksc, Kiso, Kint Sensitivity kernels for coda waves in Mayor
et al. (2014)

E2D, E3D 2-D and 3-D energy envelopes, numerically
evaluated

E2D
SS , E3D

SS Single-scattering 2-D and 3-D energy envelopes

Pi, P Probability
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Figure A_nqi. Frequency-dependent 2-D Deception Island model calculated applying the weighting functions discussed in this study to the single-station
measurements of Q−1

i (n-image).

Figure A_nqs. Frequency-dependent 2-D Deception Island model calculated applying the weighting functions discussed in this study to the single-station
measurements of Q−1

s (n-image).
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A2 Scattering ellipse

The scattering ellipse in 2-D for a source located at {−xd, 0} and a
receiver at {xd, 0} is defined as:

x2(
vtlapse

2

)2
+ y2(

vtlapse

2

)2
− 2x2

d
4

= 1 (A1)

where tlapse is the maximum coda lapse time.

A3 Scattering models, seismic albedo and extinction
length

The seismogram energy envelopes are well described by the Radia-
tive Transfer model (Sato et al. 2012). The approximate solution of
the Radiative Transfer Equation (RTE) in 2-D (Sato et al. 2012) is:

E2D[r, t] = W0exp[−Le−1vt]

2πrv
δ
[
t − r

v

]

+ W0 H
[
t − r

v

]
· B0 Le−1

2πvt

(
1 − r 2

v2t2

)−1/2

exp[B0 Le−1
√

v2t2 − r 2]exp[−Le−1vt] (A2)

and in 3-D (Paasschens 1997):

E3D
i j [r, t] ≈ W0exp[−Le−1vt]

4πr 2v
δ
[
t − ri j

v

]

+ W0 H
[
t − ri j

v

]
·

(
1 − r2

i j

v2t2

)1/8

(
4πvt

3B0 Le−1

)3/2
·

× exp[−Le−1vt]F

⎡
⎣vt B0 Le−1

(
1 − r 2

i j

v2t2

)3/4
⎤
⎦

(A3)

where F[x] = ex
√

1 + 2.026/x , W0 is the energy at source, v is
the wave speed in the half-space, H is the Heaviside function and δ

is the Dirac’s delta. B0 and Le−1 represent the seismic albedo and
the extinction length inverse, respectively. They can be expressed
in terms of quality factor, Q, by

B0 = QT /QS (A4)

and

Le−1 = 2π f

v

(
1

QS
+ 1

Qi

)
(A5)

where Q−1
T = Q−1

i + Q−1
S .

Figure A_gqi. Frequency-dependent 2-D Deception Island model calculated applying the Gaussian-like weighting functions to the single-station measurements
of Q−1

i (g-image).
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Figure A_gqs. Frequency-dependent 2-D Deception Island model calculated applying the Gaussian-like weighting functions to the single-station measurements
of Q−1

s (g-image).

Figure A_sqi. Frequency-dependent 2-D Deception Island model calculated applying the strip-like weighting functions to the single-station measurements of
Q−1

i (s-image).
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Figure A_sqs. Frequency-dependent 2-D Deception Island model calculated applying the strip-like weighting functions to the single-station measurements of
Q−1

s (s-image).

Figure A_mqi. Frequency-dependent 2-D Deception Island model calculated applying the middle-point weighting functions to the single-station measurements
of Q−1

i (m-image).
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Figure A_mqs. Frequency-dependent 2-D Deception Island model calculated applying the middle-point weighting functions to the single-station measurements
of Q−1

s (m-image).

In 3D, the single (isotropic) scattering the approximate solution
is (Zeng et al. 1991)

E3D
SS [r, t] = W0

ln
[

1+r/vt
1−r/vt

]
4πrvt

B0 Le−1 H [t − r/v]exp
[−Le−1

]
.

(A6)

Using this model it is almost impossible to obtain separate estimates
of B0 and Le−1 due to the respective trade-off; consequently, re-
searchers generally measure the quantity Le−1 = 2π f

v
(Q−1

i + Q−1
s ).

Q−1
i + Q−1

s , the sum of the Q-inverses, is called Qc or Coda Q. It is
noteworthy that Qc represents total-Q only when single-scattering
approximation is valid. In the opposite case (diffusion approxima-
tion), the approximate solution is (Zeng 1991)

E3D
D [r, t] = H [t − r/v]

(
3B0 Le−1

4πvt

)3/2

× exp

[
−3

2

r 2 B0 Le−1

vt
− vt(Le−1 − B0 Le−1)

]
. (A7)

A4 Sensitivity kernels calculated by Mayor et al. (2014)

The effects of the spatial distribution of scatterers giving rise to
anomalies in coda envelope have been investigated by Pacheco &
Snieder (2005) and more recently by Mayor et al. (2014). In this
section, their approach is briefly reviewed.

The first basic consideration is that the borders of the sensitivity
zone are given by the scattering ellipse (see Appendix A1) which
delineates the maximum area (in 2-D) encompassed by the scattered
waves. Pacheco & Snieder (2005) calculated the space probability

of the scattered energy recorded in the seismogram between the coda
start time and the maximum lapse time considered, T. These authors
introduce the concept of probability for a single wave particle,
contributing to form the wave energy envelope at the receiver, to
pass at lapse time, t′, in x . For a source located at s and a receiver at
r, and recording the particle at its arrival at time t , this probability
is

Pi [x[t′], r, s, t] = Pi [x[t′], s]Pi [r, x[t′], t − t ′] (A8)

where i represents the ith particle, and the right-hand side of is the
product of the probability that a particle arrives at position x at time
t′, and that scatters and finally arrives at the receiver r at lapse time
t. The sum, P[x[t′], r, s, t], over the set of N particles represents
the whole wave packet; P defines the probability that a wave packet
from s arrives at distance r and at time t. Integrating this quantity
over the space V

P[r, s, t] =
∫

V
P[x, r, s, t]dV [x] (A9)

where the variable t′ drops out as it depends on x. Finally, the
probability that the diffuse (scattered) energy arrives at the receiver
located at position r in a time interval from origin time to T, and
due to a scatterer in the position x is:

K [x, r, s, T ] = 1

P[r, s, T ]

∫ T

0
P[r, x[t′], t − t ′]P[s, x[t′], t ′]dt ′.

(A10)

Eq. (A10) from Pacheco & Snieder (2005) can be used to locate
the elastic perturbation affecting the intensity of the diffusive field
in which coda wave observations are carried out. Pacheco & Snieder
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(2005) equal P to the formulation of the radiation intensity in 2-D
given by the solution of RTE (eq. A2).

Mayor et al. (2014) suggest the possibility to locate sin-
gle anomalies and to discriminate between their absorption or
scattering characteristics. The sensitivity kernels for a constant
velocity 2-D earth medium and isotropic multiple scattering
are:

K sc[x, r, s, T ] = K iso[x, r, s, T ] + K int[x, r, s, T ] (A11)

where Ksc is the scattering sensitivity kernel, Kint is the intrinsic-
dissipation sensitivity kernel which will be defined hereafter and
Kiso is given by

K iso[x, r, s, T ] =
∫ T

0
P[r, x[t′], t − t ′]P[s, x[t′], t ′]dt ′. (A12)

All the other symbols were already defined above. It is noteworthy
that eq. (A12) is analogous to eq. (A10) except for the normalization
constant. Finally, Kint is given by

K int[x, r, s, T ] = − 1

2π

∫ 2π

0

∫ vT B0
Le

0

× K 1[x, r, s, T ]K 2[x, r, s, T ]dt ′dα (A13)

with K1 and K2 given by

K 1[x, r, s, T ] = exp[−(t t − t t ′)δ[R′ + (t t − t t ′)n̂′]�[t t − t t ′]

+ exp[
√

(t t − t t ′ − R′) − (t t − t t ′)]�[t t − t t ′ − R′]

2π (t t − t t ′ + R′.n̂′)
(A14)

and

K 2[x, r, s, T ] = exp[−t t ′δ[R0−t t ′n̂′]�[tt′]

+
exp

[√
t t ′2 − R2

0

]
�[t t ′ − R0]

2π (t t ′ − R0.n̂′)
(A15)

where δ is the Dirac’s delta distribution, tt = B0Le−1vt; tt′ =
B0Le−1vt′; R′ = {x − r}; R0 = {x − s}; n̂′ = {Cos[α], Sin[α]}; R′

and R are the magnitudes of vectors R′ and R. In the above equa-
tions, the intrinsic quality factor of eq. (A5) is set at infinity, to
simplify the discussion. This affects only the overall amplitude of
the functions but not their space pattern (Mayor et al. 2014). Kint is
negative, as it represents the energy that is subtracted from the wave
field and transformed into heat.

All the details relative to eqs (A14) and (A15) are explained in
Mayor et al. (2014). The theoretical kernels can be calculated only
in the assumptions of constant velocity.


