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Abstract: Seismic coda measurements retrieve parameters linked to the physical characteristics of the1

rock volumes illuminated by high-frequency scattered waves. Space Weighting Functions (SWF) and2

kernels are different tools, which model the spatial sensitivity of coda envelopes to scattering and3

absorption anomalies in these rock matrices, allowing coda-wave attenuation (Qcoda) imaging. This4

note clarifies the difference between SWF and sensitivity kernels developed for coda wave imaging.5

It extends to the third dimension the SWF previously developed in 2D using radiative transfer and6

diffusion equation, based on the assumption of Qcoda variations dependent solely on variations of7

the extinction length. When applied to active data (Deception Island, Antarctica), 3D SWF images8

strongly resemble 2D images, making this 3D extension redundant. On the other hand, diffusion does9

not efficiently model coda waveforms when using earthquake datasets spanning depths between10

0 and 20 km, as at Mount St. Helens volcano. In this setting, scattering attenuation and absorption11

suffer trade-off and cannot be separated by fitting a single seismogram energy envelope for SWF12

imaging. We propose that an approximate analytical 3D SWF, similar in shape to common coda13

kernels used in literature, can still be used in a space-weighted back-projection approach. While Qcoda14

is not a physical parameter of the propagation medium, its spatially-dependent modelling allows15

improved reconstruction of crustal-scale tectonic and geological features. It is even more efficient as a16

velocity-independent imaging tool for magma and fluid storage, once applied to deep volcanism.17
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1. Introduction19

1
20

Seismic attenuation imaging performed using coda waves provides novel information about21

tectonic structures and fluid content at crustal [1,2], regional [3] and local [4] scales. The attenuation22

coefficient is proportional to the sum of the inverse intrinsic (Q−1
i ) and scattering (Q−1

s ) quality factors.23

A separate estimate of scattering attenuation and absorption is crucial for understanding seismic wave24

propagation in highly-heterogeneous volcanic environments [eg 5] or when targeting areas having25

different tectonic and scattering properties at crustal and lithospheric scales [eg 6–8]. A scattering26

ellipsoid has been adopted for decades by scientists to map the sensitivity of coda waves to Earth27

heterogeneities, and map scattering attenuation and absorption in space [eg 9]. More recently, 2D and28

3D coda sensitivity kernels based on multiple scattering propagation have been proposed to separate29

Q−1
i and Q−1

s [eg 8,10] and invert for attenuation in the subsurface at different scales and considering30

depth [eg 2,11,12]. These sensitivity kernels define the source parameters observed at a station as a31

space-weighted average of attenuation characteristics of the sampled medium, where the weights are32

defined via integral equations [10,12]. Their application has led to absorption mapping at lithospheric33

scale [2] and are considered important for the evaluation of the effective sensitivity in ambient noise34

imaging [12].35

The space-weighting functions (SWF) discussed in this note are designed to be applied in the36

practice of the back-projection (or regionalization) method to retrieve the attenuation parameters in37

space [eg 9,13]. In this case, Q−1
i and Q−1

s estimated for a single source-receiver couple characterise38

the whole space volume, weighted by SWF values between 0 and 1. The SWF are designed with a39

Monte Carlo simulation of the multiple scattering process, following the method of Yoshimoto [14].40

Each SWF value associated with a point in space for a single-station observation is proportional to41

the probability that at this point, the attenuation value is equal to the single-station observation. At a42

point in space, we thus have as many probabilities as observations. The average of all the observed43

values weighted by these SWF provides the value of attenuation at the point. These SWFs have been44

expressively designed to map scattering attenuation and absorption in volcanoes using a diffusion45

model and active sources [eg 4,15,16]. In the resulting models, the high-attenuation contrasts are often46

related to magma/fluid storage under volcanoes and ongoing volcano dynamics.47

For a full discussion of the practice of attenuation mapping by weighted back-projection in48

volcanoes, the reader can refer to Del Pezzo et al. [17]. These authors obtain SWF for Q−1
i and Q−1

s .49

The two parameters can be rewritten using associated parameters, either the Seismic Albedo (B0) and50

the Inverse-Extinction Length (Le−1) or the intrinsic-(ηi) and scattering-(ηs) attenuation coefficients :51

B0 =
ηs

ηs + ηi
=

Q−1
s

Q−1
i + Q−1

s
; Le−1 = ηs + ηi =

2π f
v

(Q−1
s + Q−1

i ) (1)

With a SWF, the spatial Q−1
i and Q−1

s are obtained using the following equations:52

Q−1
s [x, y] =

∑k K2D
s [x, y]kQ−1

sk
∑k K2D

s [x, y]k
(2)

Q−1
i [x, y] =

∑k K2D
i [x, y]kQ−1

ik

∑k K2D
i [x, y]k

(3)

1 Throughout this paper the syntactic rules used in Wolfram-Mathematica software for the use of parentheses is used: square
brackets indicate the argument of a function; curly brackets indicate the elements of a matrix; round brackets indicate an
algebraic grouping.
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where K2D
i and K2D

s are the intrinsic and scattering SWF, Q−1
ik and Q−1

sk represent the estimates53

calculated from the fit of experimental Energy Envelopes with the diffusion model, and k spans54

the energy envelopes available. The uncertainties on the estimates of Q−1
ik and Q−1

sk can be propagated55

in equations (2) and (3) to estimate variances of Q−1
i [x, y] and Q−1

s [x, y], in the assumption of small56

covariance and null uncertainty in the determination of the weighting functions.57

Del Pezzo et al. [17] additionally obtain that, in the case of a uniform half space and for diffusive58

propagation, the following function well approximates the numerically-calculated SWF for both59

absorption and scattering attenuation:60

K2D
i,s [x, y, xr, yr, xs,ys] =

1
4πδxD2δy

exp

− (x− xr+xs
2
)2

2 (δxD)2 +

(
y− yr+ys

2

)2

0.5
(
δyD

)2

+

1
2πδxD2δy

exp

[
− (x− xs)

2

2 (δxD)2 +
(y− ys)

2

2
(
δyD

)2

]
+ (4)

1
2πδxD2δy

exp

[
− (x− xr)

2

2 (δxD)2 +
(y− yr)

2

2
(
δyD

)2

]

In equation (4), D is the source receiver distance, x and y are the space coordinates, xs and ys the source61

coordinate and xr and yr the receiver coordinates. The function fits reasonably well the numerically62

calculated SWF in case of short lapse time (around 15 s), highly diffusive media, and δx = δy = 0.2.63

These parameters represent the spatial aperture of the weighting function. The two numerically64

evaluated SWF have approximately the same shape once the level of heterogeneity increases (i.e.,65

when the scattering processes approach the diffusion regime). This is contrary to what happens for66

lower heterogeneity [18,19] and is a result valid only for volcanoes and the active data geometry.67

The spatial patterns described by the SWF depict the contribution of each cell to the coda formation68

and is thus proportional to the Sensitivity Kernels, respectively for scattering and intrinsic dissipation.69

Equation (4) is indeed equal that proposed at crustal scale for absorption mapping only at late lapse70

times [2,10,11]. The sensitivity is maximum at the source and receiver stations, remains high across71

the area contouring the seismic ray, then decreases at a distance controlled by the extinction length.72

This similarity in shape goes even further, as the spatial pattern of the function is identical to the73

depth-dependent diffusive sensitivity kernels in 3D defined by Obermann et al. [12]. The difference74

is in that the kernels do not assume a depth-dependent velocity structure, an approximation that75

is unfulfilled for shallow volcanic sources, but a constant velocity in a half-space approximation.76

The analytical solution of equation (4) is thus an approximate analytical equation for mapping Qcoda,77

similar in shape and meaning to those developed to map absorption. The equation was re-framed as78

a forward problem in a 5-km-deep volcanic medium [20] to map coda attenuation at Campi Flegrei79

caldera. The results of the inversion show the increased illumination provided by the technique and80

important correlations of the coda attenuation anomalies with deformation sources at the volcano.81

The present note investigates how effective the SWF are to illuminate multi-scale volcanism in 3D.82

It is divided into three parts:83

1. equation (4) is extended to the third dimension, maintaining the assumptions of shallow source84

and receiver in a diffusive Earth medium with no depth dependency - this is the case for the85

analysis of active seismic shots in volcanoes86

2. we propose and discuss a SWF for mapping Qcoda, calculated for a deep source in a non-diffusive87

medium and discuss its limits;88

3. we check the reliability and limits of the new approaches applying 3D SWFs to published seismic89

data bases. We use pre-calculated attenuation measurements for single source-station paths90



Version April 30, 2018 submitted to Geosciences 4 of 19

from active data recorded at Deception Island volcano (Antarctica) [21] and volcano-tectonic91

earthquakes at Mount St. Helens volcano (USA) [22].92

In Appendix, we report the main tests which were carried out in developing the applications. Test93

images are compared with previous tomography results obtained in the same areas using different94

seismic attributes, showing consistent features.95

2. Results96

2.1. 3D extension of the 2D weighting functions97

2.1.1. Diffusive Earth media98

We extended the numerical simulations described above to the third (depth) dimension,99

introducing the z-axis and keeping the half space approximation. For the assumption of no anomalous100

relevant depth dependency we rely on the results of [1]. The weighting function remains symmetrical101

around the axis connecting source to receiver, in analogy with the simulations using Radiative Transfer102

Theory [10] and alternative methods as SPECFEM3D [12]. This symmetry allows to evaluate the 3D103

SWF analytically for source (a shot) and receiver both placed at surface. In the case of a uniform half104

space, the function:105

K3D
num[x, y, z, xr, yr, xs,ys] =

1
4πδxD3δy

(5)

exp

−
0.5

(
x− xr+xs

2
)2

(δxD)2 +

(
y− yr+ys

2

)2

(
δyD

)2 +

(
z2)

(δzD)2


+

1
2πδxD3δyδz

Exp

[
−0.5

(x− xs)
2

(δxD)2 +
(y− ys)

2(
δyD

)2 +
z2

(δzD) 2

]
+

1
2πδxD3δyδz

Exp

[
−0.5

(x− xr)
2

(δxD)2 +
(y− yr)

2(
δyD

)2 +
z2

(δzD) 2

]

approximates the numerically calculated SWF in 3D to the first order (Figure 1). This analytical106

approximation is valid for the same range of Qi and Qs values and lapse time (15 s) used in Del Pezzo107

et al. [17]. This approximated space weighting function is actually a "kernel" function. Differently from108

the other diffusive kernels, it is valid solely for diffusive fields, short seismograms, and surface sources,109

like those recorded from shots fired in volcanoes for tomography purposes [21].110

2.1.2. Deep sources (natural events) and non-diffusive fields111

In the case of deep earthquakes, the assumptions made in calculating the approximation of SWF112

given by eq. (4) are invalid, and a multiple scattering regime better models coda-wave propagation.113

We thus adopt the Paasschens [23] approximation of the Energy Transport Equation solution in three114

dimensions to describe the seismogram Energy Envelope:115

E3D[r, t] ≈ W0exp[−Le−1vt]
4πr2v

δ[t−
rij

v
] + W0H[t−

rij

v
]·

(1−
r2

ij
v2t2 )

1/8

( 4πvt
3B0Le−1 )3/2

· exp[−Le−1vt]F[vtB0Le−1(1−
r2

ij

v2t2 )
3/4] (6)
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where
F[x] = ex√1 + 2.026/x

and δ and H are the Dirac delta and the Heaviside step functions, respectively. Here, W0 is the116

source energy and v is the seismic velocity. Fitting eq. (6) to the experimental energy envelopes, the117

single-path separate estimate of B0 and Le−1 is possible in principle; however, in 2D, a severe trade-off118

affects the two parameters as discussed in Del Pezzo et al. [17]. An alternative is the use of a simplified119

formula, which estimates Le−1 and B0 from the fit of data to the first order approximation of the Energy120

Transport model equation, as given by Zeng et al. [24]:121

E[r, t, B0, Le−1, v] =
δ[r− vt]

4πvr2 Exp[−rLe−1]+

H[r/v]
B0Le−1

4πrvt
Log[

1 + r/vt
1− r/vt

]Exp[−vtLe−1]. (7)

With such a fit, the severe trade-offs disappear. Equation (7) is equivalent to the single-scattering model122

developed by Sato [25] and is valid for low heterogeneity and short lapse times. In this case, intrinsic123

attenuation controls Le−1, being ηs small. The physical meaning of the retrieved B0 and Le−1 becomes124

controversial when energy envelopes recorded in media with high heterogeneity are modelled with125

equation (7). In this case, the fit-function is based on improper assumptions and Le−1 is proportional126

to the widely measured Qcoda, the coda quality factor [25] used to map, e.g., different tectonic settings127

at crustal scale [1].128

The downside is that Qcoda is not a physical parameter of the propagation medium; however, the129

Le−1 (or Qcoda) space distribution can still depict attenuation properties, and the corresponding SWF,130

Kcoda, can be calculated. For this task, we use the hypothesis of Pacheco and Snieder [26], setting B0 at131

an average value and Le−1 ∼= 2π f
v Q−1

coda:132

K3D
coda,k[$, T, B0, Le−1, v] =

T∫
0

E[rs$, τ, B0, Le−1, v]E[r$r, T − τ, B0, Le−1, v]dτ (8)

where $ is the space point with coordinates {x, y, z}, T is the lapse time, τ is the integration variable133

(time). The integral can be numerically calculated. In Figure A1, we show the contour plot of Qcoda as134

a function of Q−1
i and Q−1

s . For low scattering attenuation, Q−1
coda is independent of Q−1

s and similar135

to Q−1
i (see Appendix, Figure A1, left panel). An increase of scattering (right panel) increases the136

trade-off. In Figure 2, we reproduce the SWF calculated using equation (8).137

2.2. Application examples138

The final Qcoda image as a function of the space coordinates in a 3D space is thus obtained with a139

back-projection analogue to that used in equations 2 and 3:140

Q−1
coda[x, y, z] =

∑k K3D
coda,k[x, y, z]Q−1

coda,k

∑k K3D
coda,k[x, y, z]

(9)

where Kk
coda is the weighting function for the k-th source-receiver couple and Q−1

coda,k is the k-th Qcoda141

estimate. k spans over the available source-receiver couples. To avoid confusion with respect to the142

definition of source-station kernels we remind the reader that:143

1. the values of K3D
coda,k[x, y, z] express the probability that the Q−1

coda estimated at a station is equal to144

the one measured at [x,y,z];145

2. equation (9) is to be used exclusively for back-projection;146

3. the kernel K3D
num[x, y, z, xr, yr, xs,ys] in equation (5) can still be used in an inversion for the147

space-dependent parameters, if the underlying hypotheses are fulfilled.148



Version April 30, 2018 submitted to Geosciences 6 of 19

2.2.1. Deception Island volcano - diffusive approximation149

Deception Island volcano (Antarctica) is an extraordinary natural laboratory, characterised by a150

horseshoe shape which permits to design seismic active field surveys characterized by elaborate source151

and receiver geometries. To test the 3D SWF discussed in this note, we used data from the seismic152

experiment TOMO-DEC [21] publicly available from the Australian Antarctic Data Center repository153

(AADC). The same data set was used by Prudencio et al. [16], who obtained a first 2D attenuation154

image of this island using a simplified (Gaussian shape) SWF (data and final models also are available155

from the AADC repository). Del Pezzo et al. [17] improved this image using the 2D weighting function156

of equation (4), applied to data filtered in several frequency bands centred from 4 to 20 Hz. The present157

test is carried out using data filtered in the 4 Hz band, where the highest attenuation contrasts were158

previously observed. Using the 3D SWF of equation (5), we show the attenuation coefficient space159

distribution calculated at depths of 2 and 4 km, with a horizontal grid of 4 km (Figure 3). The two160

panels are similar, with high absorption affecting the Eastern and Southwestern parts of the Island.161

Because the SWF are practically null at 6 km, no images can be calculated below this depth.162

2.2.2. 3D SWF at Mount St. Helens volcano - non-diffusive media163

Mount St. Helens volcano (US) is a central-cone stratovolcano, characterized by 0-7 km deep164

earthquakes (under the central cone) and lateral fault seismicity (down to 20 km). A 3D Q−1
c attenuation165

model of the area has been calculated using the SWF described by equation (8) through equation (9) at166

Mount St. Helens, with a test passive dataset of 451 waveforms ([27] - available from the PANGAEA167

Data Centre). We use the single-path Qcoda estimates obtained by De Siena et al. [3] at 6 Hz. In168

Appendix, the sensitivity test carried out to check the reliability of the method is described. Equation169

(9) has been applied to a space grid with space points separated by a distance of 4 km. In this way, we170

obtain the Qcoda space values at 500 3D grid points. The Q−1
coda 3D space distribution is plotted on two171

horizontal slices, crossing the z axis at depths of 0.5 km and 4 km (Figure 4, uppermost panels). The172

vertical slice (lower panel) intersects the surface along the white line drawn in the upper left panel. A173

sensitivity test using a hemispherical anomaly centred in the middle of the study area is described174

in Appendix. The input test is only roughly reproduced: the small number of data available would175

correspond to an underdetermined inversion problem, and this strongly reduces the sensitivity of the176

method to small anomalies, making unsuccessful any checkerboard test.177

3. Discussion178

Figure 1 shows that, in areas of high heterogeneity (diffusion approximation) and for data shots179

fired at the surface, the sensitivity of the SWF method strongly reduces for increasing depth, as the180

SWF values strongly decrease with depth. Coda waves recorded from shots fired at the surface181

in diffusive Earth media and recorded at short distances, as for the Deception Island case study,182

propagate mainly in the upper 3 - 4 kilometres of the crust (Figure 3). The Northern part of the island183

is associated with the crystalline basement and shows low attenuation, while high-attenuation bodies,184

spatially-correlated to high-velocity structures (Ben-Zvi et al. 28;Zandomeneghi et al. 29) characterise185

the southern part of the volcano. There is a consistent agreement between low/high coda attenuation186

and high/ low-velocity structure since the first scattering/absorption separations [16]. The correlation187

between the SWF-dependent 2D models [17] and the 3D models indicates that coda-attenuation188

estimates are stable using this dataset. Comparing the present 3D attenuation images with the total-Q189

images obtained by Prudencio et al. [30] using direct-P coda-normalized waves (MuRAT code - De Siena190

et al. [31]) we observe a good match between the 3D intrinsic-Q and the total-Q distributions. The191

location of the main total high-attenuation body retrieved by Prudencio et al. [30] spatially fits the192

main absorption anomaly.193

To investigate greater depths, deeper sources (passive data) are necessary. In this case, the194

diffusion equation is inappropriate, as the Earth heterogeneity strongly reduces with depth and a theory195
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based on multiple scattering is necessary. However, inverting a multiple scattering model for energy196

envelopes associated with single source-receiver couples prevents the recovery of separate scattering197

and intrinsic tomography images due to the trade-off between B0 and Le−1. The only possibility is198

thus the use of an approximate kernel to invert for a unique parameter, Le−1, a quantity proportional199

to the widely measured Qcoda parameter. In this case, we proposed to calculate the corresponding SWF200

using the approach described by Pacheco and Snieder [26]: despite the controversial physical meaning201

of Qcoda, images of the spatial variations of Qcoda are still retrievable, like those recently described202

by Mayor et al. [2] which depict the attenuation structure of the Alps. Following this approach, we203

calculated the 3D Qcoda image of Mount St. Helens volcano (Figure 4). We compared them on a map204

with the 2D Qcoda space distribution obtained by De Siena et al. [3]. The authors used maps of late205

lapse-time Qcoda, assuming it as a measurement of absorption, and energy-envelope peak-delays,206

a quantity proportional to scattering-Q, to separate scattering attenuation from absorption. They207

back-project the single-station Qcoda values assuming that it is distributed on a strip connecting source208

and ray, derived from pre-calculated 3D rays.209

At both depths shown in Figure 4, the low inverse Qcoda west of Mount St. Helens is a major210

feature, similar to that observed by De Siena et al. [3] (see their Figure 5, 6 Hz panel). Nevertheless,211

this area is a unique anomaly in our analysis, located west of the volcano at a depth of 4 km, and212

extends to the south at 500 m. A wide area inside this anomaly was not sampled in the previous213

study, as it assumed a back-projection of the single-station Qcoda along a strip. In the case of Mount214

St. Helens, many of the seismic sources are located at, or below, 8 km; the SWF theoretically produce215

an improved resolution in this depth range due to the wider illumination at near-source nodes. The216

example reported in the present paper is made with a limited number of data. The images obtained217

for Mount St. Helens are thus defocused and need to be improved using a greater data set. Despite218

this limitation, the use of SWF’s is promising in enlightening the space attenuation contrasts. We are219

confident that it may become a useful tool to complement tomography images achieved with different220

techniques, especially due to its independence of velocity tomography results.221
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Figure 1. Plot of the 3D kernel function obtained using Equation 5. The source and receiver are set at
[xs=5km, ys=2km] and [xr=5 km,yr=8 km], respectively. The colour-scale marks the isosurfaces. The
kernel function is normalized to its value at [x=5 km, y=5 km]. The vertical sections correspond to the
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Version April 30, 2018 submitted to Geosciences 9 of 19

0 2 4 6 8 10
-5

-4

-3

-2

-1

0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

>2.5

Kcoda3D

Distance (km)
Source

Receiver

De
pt

h 
(k

m
)

Figure 2. Vertical section showing the 3D kernel function obtained using Equation 8. The colour-scale
marks the isosurfaces. The kernel function is normalized to its value at [x=5 km, z=-2.5 km].



Version April 30, 2018 submitted to Geosciences 10 of 19

-10 -5 0 5 10
-10

-5

0

5

10

-10 -5 0 5 10
-10

-5

0

5

10

-10 -5 0 5 10
-10

-5

0

5

10

-10 -5 0 5 10
-10

-5

0

5

10

0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

Depth=2km Depth=4km

Qi-1 4Hz

Qs-1 4HzLa
tit

ud
e 

(k
m

)

Longitude (km)

-10 -5 0 5 10
-10

-5

0

5

10

-10 -5 0 5 10
-10

-5

0

5

10

Qi-1 4Hz

Qs-1 4Hz

2D image

Qi-1 4Hz

Qs-1 4Hz

a b

c d

e

f
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Figure 4. Q−1
coda space distribution at Mount St. Helens. Horizontal slices calculated at the depths of 0.5

km and 4.0 km. The vertical section intersects the horizontal plane along the white line in the upper
left panel. Topography isolines (only in the zone of Mount St. Helens) are superimposed. Discrete
Q−1

coda space distribution has been interpolated before plotting the percent of average inverse Qcoda,
< Q−1

coda >. All panels are drawn using Mathematica_10TM.
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The following abbreviations are used in this manuscript:231

232

SWF Space-Weighthed Functions233

Appendix A Demonstration that Q−1
coda approaches Q−1

i in media with small Q−1
s234

We have fit the Paasschens model calculated for several couples {Q−1
i , Q−1

s } to the Aki and235

Chouet’s formula [32] and inverted for Qcoda. The Qcoda contours are shown in Figure A.1. Vertical236

contours in the left panel show that, independently of Q−1
s , Qi practically coincides with Qcoda.237
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Figure A.1. Left. Q−1
coda in media with low values of Q−1

s is independent of Q−1
s . Right. In case of high

scattering attenuation (approaching to the diffusion regime) the plots show some trade-off.
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Appendix B Sensitivity tests for 3D Qcoda SWF238

At Deception Island, we use as input checkerboard structure laterally-extended 4x4 km,239

parallelepipeds, extending down to 10 km depth (Figures B.1). Q-values alternate between 50 and240

500. We do not report the results obtained for inputs with a cell structure alternate in depth, as the241

SWF for shallow source and receiver are about zero below 6 km, producing false uniform structures242

at increasing depth. At Mount St. Helens, the available data set is much smaller than at Deception243

Island. The corresponding sensitivity tests thus show that the SWF calculated using with Equation 8244

do not reproduce the input values adequately, mainly because the poor sampling in space affects the245

averaging process described by Equation 2. Despite this limitation, the input values are reproduced in246

the central part of the area (i.e. the volcanic edifice). The input values are underestimated elsewhere,247

with blurring and ghosts emerging around the volcano.248

At Mount St. Helens (Figure B.2) we built as second synthetic input a hemisphere with a contrast249

in Q of 1
5 with respect to the background. The process of averaging yields a blurred image on the250

sides; the vertical profile shows a similar contrast with respect to input down to 10 km, with consistent251

ghosts to the side and deeper than the central anomaly. A greater number of data would improve the252

image definition, as the SWF map the structures around the central cone insufficiently.253
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Figure B.1. Synthetic test for the SWF. Left panels: input. Right panels: output.
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Figure B.2. Synthetic test. Left panels: test input, where the contrasts are expressed as percent respect
to the average. and correspond to Q = 50 (red) and Q = 500 (blue). Right panels: output, where the
attenuation contrast is reproduced only in the center of the area.
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Appendix C Numerical integration of equation (8)254

The function to be integrated (equation 8) is a product of two functions, each one including a
delta and a continuously decaying term, which here we call "coda". Hereafter we drop out in equation
(8) the dependence on B0, Le−1 and v leaving unaltered $ and t. Therefore, the integral Kss[$, t] can be
decomposed into four integrals (i.e. delta·delta, delta·coda, coda.delta and coda.coda):

Kss[$, t] = I1[$, t] + I2[$, t] + I3[$, t] + I4[$, t] (A1)

each of them null for t < (ta + tb) where ta and tb are respectively the time the perturbation reaches255

position $ from the source and the time from $ to receiver. These integrals are defined as:256

I1[$, t] =
∫ t

ta+tb

E1[ra, u]δ[u− ta]E1[rb, t− u]δ[t− u− tb]du

I2[$, t] =
∫ t

ta+tb

E1[ra, u]δ[u− ta]E2[rb, t− u]du

I3[$, t] =
∫ t

ta+tb

E2[ra, u]E1[rb, t− u]δ[t− u− tb]du

I4[$, t] =
∫ t

ta+tb

E2[ra, u]E2[rb, t− u]du

where E1[r, t] refers to the wavefront (or delta) contribution, E2[r, t] refers to the coda contribution,257

[ra, ta] refers to the source-$ impulsive response and [rb, tb] refers to the $-receiver impulsive response.258

Taking into account the sampling property of the Dirac’s delta function:∫
δ[u− t0] f [u]du = f [t0]

the integrals I1[$, t], I2[$, t] and I3[$, t] can easily be solved:259

I1[$, t] = E1[ra, ta]E1[rb, tb]δ[t− ta − tb] (A2)

I2[ρ, t] = E1[ra, ta]E2[rb, t− ta] (A3)

I3[$, t] = E1[rb, tb]E2[ra, t− tb] (A4)

It can be demonstrated that if functions E3D[ra, t], E3D[rb, t] are known, then I1[$, t], I2[$, t] and260

I3[$, t] are immediately known and easily evaluable functions.261

The last integral I4[$, t] is obtained by convolving both codas. It is a continuous function with262

null value for t < (ta + tb) and with an exponential decay for large times. Its computation requires263

a numerical integration to solve the convolution. The entire procedure with all the demonstrations264

is reported in (De La Torre and del Pezzo, in preparation. A pre-print draft can be requested to the265

authors). The Matlab code to perform the calculation is reported in the supplementary material,266

together with the entire algorithm estimating the SWF as a function of the 3D space coordinates, with267

Le−1,B0 and v as parameters.268
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